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[1] We present a new statistical framework to analyze rock deformation data and
determine a corresponding flow law and its uncertainty. All experimental uncertainties,
including inter-run bias, are taken into account in the new formalism. Our approach is
based on Bayesian statistics and is implemented by a Markov chain Monte Carlo method.
We apply this approach to published data on the subsolidus deformation of synthetic
olivine aggregates and try to establish experimental constraints on the rheology of Earth’s
upper mantle. Deformation data are interpreted on the basis of a composite flow law,
which includes diffusion and dislocation creep mechanisms under both dry and wet
conditions. We show that olivine rheology under wet conditions suffers major
uncertainties suggesting the influence of poorly characterized parameters such as water
content during deformation. Also, the pressure dependence of creep is still poorly
constrained because of the lack of high-quality data under high pressures. However, our
statistical analysis provides a solid framework to obtain a permissible range of flow
laws constrained by the existing data, which will help geodynamic modeling
with well-defined statistical bounds.
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1. Introduction

[2] The constitutive relation between stress and strain rate
for silicate minerals controls how the crust and mantle
respond to applied forces. In particular, the constitutive
relation for olivine is usually believed to govern the
rheology of Earth’s upper mantle because olivine is the
most abundant phase (with a volume fraction of �60%) and
also the weakest in most cases [e.g., Karato and Wu, 1993].
Because of this significance in mantle dynamics, the rheo-
logical properties of forsteritic olivine have been studied
extensively in the past to derive its dependence on temper-
ature, pressure, stress, grain size, and composition [e.g.,
Weertman, 1970; Goetze and Evans, 1979; Chopra and
Paterson, 1984; Karato et al., 1986; Bai et al., 1991; Hirth
and Kohlstedt, 1995a; Mei and Kohlstedt, 2000a; Karato
and Jung, 2003]. Though mantle rheology can also be
inferred from geophysical observations such as postglacial
rebound [e.g., Wu and Peltier, 1983; Nakada and Lambeck,
1989] and the geoid [e.g., Hager et al., 1985; Ricard and
Wuming, 1991], this observational approach is limited to
estimating average viscosity with low spatial resolution. For
a number of geodynamical problems, we need more than
average viscosity, and laboratory experiments on rock
deformation provide essential constraints on how the mantle
may actually deform under various temperature and pres-
sure conditions.

[3] Owing to experimental efforts in the past two decades
or so, we now have a detailed understanding of olivine
rheology both in diffusion and dislocation creep regimes
[e.g., Hirth and Kohlstedt, 2003]. Along with this maturity
in experimental studies, the numerical modeling of mantle
dynamics has become progressively sophisticated by incor-
porating various complexities in mantle rheology [e.g.,
Braun et al., 2000; Hall and Parmentier, 2003; Billen and
Hirth, 2005; Kneller et al., 2005]. Such elaboration on
numerical models would result in more realistic predictions,
without which it would be difficult to interpret geophysical
observations in terms of subsurface dynamics. Seismic
anisotropy, for example, is often used to infer mantle flow
pattern because the dislocation creep of olivine results in the
development of lattice-preferred orientation. Dislocation
creep, however, takes place only when deviatoric stress
exceeds some critical value, below which diffusion creep
predominates, and this critical stress is known to depend on
temperature, pressure, grain size, and water content. Con-
necting mantle flow and seismic anisotropy thus requires
modeling with composite rheology, which deals with this
delicate competition between different creep mechanisms.
[4] Deformation experiments can provide direct con-

straints on these details of creep mechanisms, but strain
rates attained in laboratories are usually on the order of
10�5 s�1, which is ten orders of magnitude faster than
geological strain rates (�10�15 s�1). This discrepancy in
strain rates is unavoidable because deformation experiments
must be done on a timescale of hours. To enhance strain
rates, grain sizes are reduced to microns and deviatoric
stresses are increased to �100 MPa, whereas the grain size
of mantle olivine is typically on the order of millimeters
[e.g., Ave Lallemant et al., 1980] and deviatoric stresses are
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expected to be on the order of 1 MPa in most of the mantle
[e.g., Hager and O’Connell, 1981]. The temperature range
that can be explored is also narrow (�200 K); strain rates
would be too small to be measured at lower temperatures,
and samples would melt at higher temperatures. Consider-
able extrapolation is thus involved when using experimen-
tally derived mantle rheology in numerical modeling.
Because nontrivial uncertainties are usually associated with
such experimental constraints, it is important to know how
such uncertainties affect our inference based on geodynam-
ical models.
[5] The uncertainty of olivine rheology, however, has not

been fully described. As shown in the next section, the
functionality of olivine rheology is complex, involving at
least 18 parameters. Though previous studies often report
the uncertainty of some of those parameters such as activa-
tion energy [e.g., Hirth and Kohlstedt, 2003], an error
analysis would be incomplete without specifying how it is
correlated with the uncertainty of other parameters. More-
over, parameter estimation itself does not seem to be so
reliable in previous studies. To estimate activation energy,
for example, experimental data are usually normalized to
constant grain size and constant stress, for which grain-size
and stress exponents need to be specified. Estimated acti-
vation energy and its uncertainty depend not only on
normalized data but also on the uncertainty of these expo-
nents, but the influence of the latter is rarely taken into
account in the literature on olivine rheology. It is possible to
estimate all of relevant parameters simultaneously by non-
linear inversion, but earlier attempts are incomplete espe-
cially in terms of handling experimental uncertainties [e.g.,
Parrish and Gangi, 1981; Sotin and Poirier, 1984]. Sotin
and Poirier [1984], for example, applied the nonlinear
inversion method of Tarantola and Valette [1982b] for the
deformation of sodium chloride, and their approach has
been used for other minerals as well [e.g., Poirier et al.,
1990; Franssen, 1994; Renner et al., 2001]. This inversion
method, however, is implemented by an iterative procedure
similar to Newton’s root-finding algorithm, and thus a
solution may not be unique and iteration may not converge
if nonlinearity is too severe. Such difficulty is expected
when estimating a composite flow law (e.g., diffusion and
dislocation creep combined), and stably inverting for all of
relevant parameters may not be possible [e.g., Bystricky and
Mackwell, 2001]. Furthermore, the theory behind it requires
that a priori constraints on flow-law parameters must follow
the Gaussian distribution, and even if this condition is met,
the uncertainty of parameters (i.e., their a posteriori covari-
ance) cannot be correctly estimated because most of exper-
imental uncertainties (other than uncertainty in strain rates)
have to be neglected in the linear approximation adopted by
the theory [Tarantola and Valette, 1982b, section 2.5].
[6] The purpose of this paper is to present a more flexible

statistical framework to analyze rock deformation data and
determine a corresponding flow law and its uncertainty. We
apply this new approach to published data on the deforma-
tion of olivine aggregates and establish experimental
bounds on upper mantle rheology. Our approach is based
on Bayesian statistics and is implemented by a Markov
chain Monte Carlo (MCMC) method. These concepts are
explained in some details in the next section on theoretical
formulation. The compilation of experimental data is then

described, and the statistical representation of olivine rhe-
ology is derived by a series of MCMC simulations. We also
briefly discuss the implications of this newly derived
rheology. Our theoretical formulation in the following uses
olivine rheology as an example, but its overall strategy
should also be applicable to other minerals with minor
tuning if needed.

2. Theoretical Formulation

2.1. Flow Law

[7] We consider two deformation mechanisms, power law
dislocation creep and diffusion creep, under a range of water
content. The previous studies suggested that the flow-law
parameters are different between water-saturated (‘‘wet’’)
and water-poor (‘‘dry’’) conditions [e.g., Mei and Kohlstedt,
2000a, 2000b]. The difference in flow-law parameters
between these two different conditions is likely due to the
difference in relevant defects involved in each regime [e.g.,
Karato, 2007, Chap. 20]. Therefore we assume the follow-
ing four different flow laws:

_ediff ;dry ¼ A1d
�p1s exp �E1 þ pV1

RT

� �
; ð1Þ

_ediff ;wet ¼ A2d
�p2Cr2

OHs exp �E2 þ pV2

RT

� �
; ð2Þ

_edis;dry ¼ A3sn3 exp �E3 þ pV3

RT

� �
; ð3Þ

_edis;wet ¼ A4C
r4
OHs

n4 exp �E4 þ pV4

RT

� �
; ð4Þ

where _e is a strain rate, the subscripts ‘diff’ and ‘dis’ denote
diffusion creep and dislocation creep, respectively, and the
subscripts ‘dry’ and ‘wet’ denote dry and wet conditions,
respectively. The symbol _ediff,dry, for example, represents a
strain rate due to diffusion creep under a dry condition. Ai’s
are scaling constants, d is average grain size in microns, s is
deviatoric stress in MPa, COH is water content in ppm H/Si,
Ei’s are activation energies, p is pressure, Vi’s are activation
volumes, R is the universal gas constant, and T is absolute
temperature. There are three kinds of exponents to describe
dependency on grain size (p1 and p2), stress (n3 and n4), and
water content (r2 and r4). We assume linear rheology for
diffusion creep so that the stress exponent is unity for
_ediff,dry and _ediff,wet, and no dependency on grain size for
dislocation creep. The total number of flow-law parameters
is thus 18. We do not consider the Peierls mechanism [e.g.,
Goetze and Evans, 1979], which becomes important for low
temperature and high stress, nor grain boundary sliding
[e.g., Hirth and Kohlstedt, 2003], which depends on both
grain size and stress. The effect of the Peierls mechanism
should be marginal at most for experimental data considered
in this study, given their limited temperature and stress
ranges. Hirth and Kohlstedt [2003] suggested that grain
boundary sliding may be important at conditions near the
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transition from diffusion to dislocation creep, but it is not
clear whether grain boundary sliding can be an important,
rate-limiting process at such conditions. Strong experi-
mental support for grain boundary sliding may be found for
other minerals such as ice [e.g., Goldsby and Kohlstedt,
1997, 2001], but for olivine, the demonstration of Hirth and
Kohlstedt [2003] hinges primarily on the accuracy of
diffusion creep flow law they assumed (see their Figure 7a).
As we will show in this study, existing experimental data
can be explained well by a simple combination of diffusion
and dislocation creep, leaving little room for grain boundary
sliding.
[8] Note that we use single measures of strain rate and

stress to characterize a flow law. This is a simplification in
which plastic isotropy is assumed. Both strain rate and
stress are second-rank tensors, and a general constitutive
relation between them requires a fourth-rank tensor for
viscosity. However, conducting deformation experiments
with different deformation geometries is highly complicat-
ed, and a scalar constitutive relation is usually employed by
assuming isotropic shear viscosity. We adopt this conven-
tional approach, and the second invariants of strain rate and
stress ( _eII and sII) are assumed in equations (1)–(4). Under
this assumption results from simple shear deformation and
triaxial compression tests can be analyzed together.
[9] Because diffusion creep and (power law) dislocation

creep occur in parallel, the total strain rate of a sample is a
simple sum of strain rates due to each mechanism, i.e.,

_e ¼
X
i

_ei ¼ _ediff þ _edis; ð5Þ

where the subscript i denotes a different deformation
mechanism (1 for diffusion creep and 2 for dislocation
creep). Roughly speaking, diffusion creep is important at low-
stress conditions whereas dislocation creep becomes sig-
nificant at high-stress conditions. Deformation experiments
are usually done at conditions close to a transition between
these two mechanisms. Separating contributions from
different mechanisms by simultaneous inversion (so-called
‘global’ inversion) is thus important [Hirth and Kohlstedt,
2003]. To our knowledge, however, simultaneously inverting
for all of the relevant parameters has not been attempted yet
for olivine rheology.
[10] For each mechanism, the flow law will depend on the

water content. The nature of transition between the ‘‘wet’’
flow law and the ‘‘dry’’ flow law is not very clear since it
depends on the details of the microscopic mechanism of
deformation. However, in all cases so far studied, strain rate
changes with water content (water fugacity) in such a way
that the strain rate versus water content curve shows a
positive concave shape, and therefore we may choose

_ei ¼ _ei;dry þ _ei;wet ð6Þ

or

_ei ¼ max _ei;dry; _ei;wet
� �

: ð7Þ

As in previous studies, we consider dry and wet deforma-
tion experiments separately, and use them to determine the

dry and wet flow laws, independently to each other. This is
equivalent to assuming equation (7) and also assuming that
wet experiments have high enough water concentrations to
exceed the transition. This assumption is reasonable because
olivines are usually fully saturated with water in wet
deformation experiments. We will also test its validity later
by inspecting the internal consistency of the estimated flow
law (section 4.3).

2.2. Statistical Model For Experimental Data

[11] Both the dry and wet flow laws can be expressed in
the form of equation (5), but this equation does not directly
lend itself to an inverse problem because experimental data
contain various kinds of errors, the functionality of which
must also be specified. We propose to use the following
simple statistical model for measured strain rate data:

_ejobs ¼
X
i

_ei T j; p j; d j; s j;C j
OH

� � !
exp X j
� �

; ð8Þ

where _eobs
j is a strain rate reported for j-th experiment and X

is a random variable. More complicated statistical models
are of course possible, but we judge that the above model
has sufficient flexibility with respect to existing data. The
role of the random variable X is to absorb all of experimental
variabilities not explicitly modeled by equations (1)–(4), i.e.,
variables other than temperature, pressure, average grain
size, stress, and water content. Examples include oxygen
fugacity, grain size distribution, anisotropy, unnoticed loss
of water during a wet experiment, and the duration of an
experiment (which is relevant to whether steady state
deformation is achieved or not). Oxygen fugacity, for
example, may be kept relatively constant in a series of
experiments, but different data sets may be characterized by
different levels of oxygen fugacity depending on the
experimental setup [e.g., Hirth and Kohlstedt, 1995a].
Anisotropy in viscosity, though usually not considered, may
still exist and develop during deformation, potentially
leading to systematic differences among different experi-
mental runs.
[12] This issue of systematic bias has been recognized in

the experimental community. For example, the temperature
dependency (i.e., activation energy) is usually estimated
based on a single experimental run, in which only temper-
ature is changed in a stepwise manner while other param-
eters are relatively unmodified [e.g., Mei and Kohlstedt,
2000a]. An implicit assumption behind this approach is that,
whereas the absolute values of strain rate may depend on
unquantified experimental parameters, such parameters
would remain relatively constant during one experimental
run. Relative variations within a single run are thus consid-
ered to be robust. In the statistical framework of equation (8),
this is equivalent to assume that the random variable X is
constant within an experimental run but can take different
values among different runs. If this assumption is employed,
the variable X may also be called ‘inter-run bias’. This is a
strong assumption, but in order to model a more complicated
behavior (e.g., ‘drift’ caused by a gradual loss of water),
more detailed information on a run condition is required,
which is currently unavailable.
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[13] A need for the concept of inter-run bias may be
apparent in Figure 1. Plotted here are dry and wet experi-
mental runs from Mei and Kohlstedt [2000a, 2000b], all
conducted at 1523 K and 0.3 GPa (thus no correction for
temperature and pressure is required). Dry runs are consis-
tent with each other particularly at high stresses (i.e., in the
dislocation creep regime), and the systematic difference
seen at lower stresses is due to different grain sizes. A
similar consistency is not observed among wet runs. Be-
cause all of them are at identical temperature and pressure
condition, the water content for wet data is supposed to be
the same in principle. As differences in grain size can
explain only some minor scatters at low stresses, significant
scatters observed at higher stresses (�100 MPa) indicate
that these experiments are not entirely reproducible due to
unspecified experimental variabilities (e.g., loss of water).
The importance of inter-run bias will become more obvious
when inversion results are shown later.
[14] A misfit between observed and predicted strain rates

may be measured by the following cost function:

c2 qk ;Xmð Þ ¼
XM
m¼1

XNm

jm¼1

log _ejmobs � log
X
i

_ei s
jm
l

� �
� Xm

 !2

rvar _ejmf g þ
X
i

rvar i; sjml
� 	 ; ð9Þ

where qk denotes a set of flow-law parameters such as Ai

and Ei, and Xm is a set of inter-run biases among M
experimental runs, each of which contains Nm deformation
data. A set of experimental variables used in the flow law
such as Tjm and pjm is collectively referred to by sl

jm, and
rvar{ _ejm} denotes a relative variance originating in the error
of strain rate measurements. Finally, rvar{i, sl

jm} denotes a
relative variance introduced by the uncertainty of experi-
mental variables in each creep mechanism. When a flow law
is estimated in previous studies, a linear regression is
usually used. For example, strain rates are plotted as a
function of deviatoric stress, and a stress exponent is

estimated by minimizing misfit only in the vertical
coordinate (i.e., strain rate). This corresponds to neglecting
rvar{i, sl

jm}, the consideration of which makes the inverse
problem highly nonlinear. There are, however, small but
finite errors in all of experimental variables, which must be
taken into account when fitting a flow law to experimental
data. Each error may be small, but their sum may not be so.
When there are only two variables, this is a well-known
problem in statistics called least squares with errors in both
coordinates [e.g., Deming, 1943; Reed, 1989; Macdonald
and Thompson, 1992]. Equation (9) can be derived by
generalizing it to many variables.
[15] In equation (9), strain rates are compared in the

logarithmic scale, because the uncertainty of strain rate
measurements is usually provided in the form of relative
error. To be consistent with this, the first term in the
denominator is defined as:

rvar _ej
� 	

¼ var _ejf g
_ejobs
� �2 ; ð10Þ

where var { _ej} is the variance (or squared error) of j-th
strain rate data (see Appendix A). Thus if its relative
measurement error is 5%, rvar { _ej} is (0.05)2 = 0.0025. The
second term is more complex, and its derivation is given
in Appendix A. For diffusion creep under dry conditions
(i = 1), for example, we have

rvar 1; sjl
� 	

¼ _ej1X
i
_eji

 !2

p21
var djf g
djð Þ2

 

þ var sjf g
sjð Þ2

þ V1

RTj

� �2

var pj
� 	

þ E1 þ pjV1

R Tjð Þ2

 !2

var Tj
� 	1A;

ð11Þ

where the index i runs from 1 (dry diffusion creep) to 2
(dry dislocation creep). Note that this variance depends
not only on experimental variables and their uncertainty
but also on flow-law parameters.
[16] The cost function is a function of not only flow-law

parameters qk but also inter-run biases Xm, both of which are
to be estimated by minimizing this cost function. We will
treat this nonlinear inverse problem by a Bayesian approach.

2.3. Bayesian Inference

[17] We call qk and Xm collectively as a model m, and a
space spanned by all possible models is denoted by M. Our
task is more than just minimizing c2(m) over M; we need
to delineate the model subspace that contains all of equally
‘successful’ models in terms of explaining given experi-
mental data. Even before looking at data, we have some
(albeit vague) idea on the likely range of successful models.
For example, activation energies Ei should be positive and
are probably on the order of a few hundreds kJ mol�1. The
model space we need to explore is bounded by such a priori
constraints and not infinite. By incorporating experimental

Figure 1. Raw experimental data from Mei and Kohlstedt
[2000a, 2000b] at T = 1523 K and p = 0.3 GPa under dry
(open circle) and wet (solid circle) conditions. Data from the
same run are connected by lines.
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constraints (i.e., calculating c2(m)), we can further restrict
the model space.
[18] Bayesian inference formalizes the above procedure

as follows [e.g., Tarantola, 1987]. Let us define

r mð Þ ¼ kp mð ÞL mð Þ; ð12Þ

where r(m) is the a posteriori probability density, k is a
normalization constant, p(m) is the a priori probability
density, and L(m) is the likelihood function that measures
the success of a particular model by comparing its
predictions with observations. The a priori probability
density p(m) can take a simple form, e.g., p(m) = c (c is a
normalization constant) if all of model parameters are
within prescribed bounds and p(m) = 0 otherwise. It is
common to calculate the likelihood function based on the
cost function as

L mð Þ ¼ exp � 1

2
c2 mð Þ

� �
; ð13Þ

and we also adopt this definition. The normalization
constant k is determined so thatZ

M
r mð Þdm ¼ 1: ð14Þ

With the a posteriori probability density, the model mean
can be calculated as:

mean mf g ¼
Z
M

mr mð Þdm; ð15Þ

and the model variance is given by

var mf g ¼
Z
M

m�mean mf gð Þ2r mð Þdm: ð16Þ

[19] Estimating the flow-law parameters and their uncer-
tainty thus reduces to evaluating the integrals of equations (15)
and (16). This integration is, however, difficult because of
the high dimensionality of our problem. The composite flow
law under dry conditions, for example, has eight parameters
(equations (1) and (3)), and because there are 14 relevant
experimental runs in published data (so 13 biases to
estimate), the total number of model parameters is 21. Even
if we discretize each dimension very coarsely using only
10 points, we have to evaluate the integrand for 1021

different models at least. Such brute-force numerical inte-
gration is obviously intractable and also extremely ineffi-
cient; the likelihood function L(m) and thus r(m) is virtually
zero for most models because of their large c2(m). We are
thus forced to sample the model space by some kind of
Monte Carlo scheme, but sampling should be much more
efficient than purely random. Markov chain Monte Carlo
methods would be optimal for our purpose.

2.4. Markov Chain Monte Carlo With Gibbs Sampler

[20] Markov chain Monte Carlo (MCMC) methods are a
class of algorithms for sampling from a probability distri-
bution based on Markov chains [e.g., Liu, 2001; Robert and
Cassela, 2004]. Being very powerful for numerically cal-
culating multidimensional integrals, these algorithms have a

long history in computational physics [e.g., Metropolis et
al., 1953; Frenkel and Smit, 2002] and have become
popular in Bayesian statistics in recent years. MCMC
applications can also be found in geophysical inverse
problems [e.g., Mosegaard and Tarantola, 1995; Sambridge
and Mosegaard, 2002]. There are a number of excellent
articles and books on MCMC methods [e.g., Geyer, 1992;
Smith and Roberts, 1993; Gilks et al., 1996; Gamerman,
1997; Liu, 2001; Robert and Cassela, 2004], and readers are
referred to those references for formal and rigorous explan-
ations. Here we restrict ourselves to discussing two major
sampling schemes, the Metropolis algorithm and the Gibbs
sampling, in the context of our inverse problem.
[21] In the Metropolis algorithm, we choose arbitrarily an

initial model,m0, and calculate corresponding r(m0).We then
randomly perturb this initial guess to get a trial model,m0, and
calculate r(m0). If r(m0) > r(m0), m

0 is certainly a better
model thanm0, so we accept this perturbed model as the next
model, i.e., m1= m0. If r(m0) � r(m0), on the other hand, we
draw one random number, r, from the interval [0,1] and

m1 ¼
m0 if r < r m0ð Þ=r m0ð Þ;
m0 otherwise:



ð17Þ

Even if a trial move does not result in a better model,
therefore, there is a finite possibility that it is accepted as the
next move. The theory of Markov chains guarantees that,
roughly speaking, the repeated application of this random
move eventually explores all ‘important’ models (i.e., ones
with reasonably high r(m)). When such situation is
achieved, the random walk is said to be ‘converged’.
[22] We do not know, however, how many iterations are

necessary to reach convergence a priori, and the number of
required iterations often depends heavily on how random
walk is simulated. In general, the size of random perturba-
tion to create a trial move must be small enough so that
successive moves do not result in drastic model changes,
which usually result in rejecting most trial moves, but also
large enough to avoid being trapped near a local minimum
for a long time. That is, the perturbation size should be
carefully chosen so that a corresponding Markov chain has
rapid ‘mixing’. It requires trial and error to tune the
Metropolis step, and this tuning is often data-dependent;
the best tuning for a particular data set does not necessarily
work well for different data sets. Also, different model
parameters need different optimal steps. This trial-and-error
approach becomes quite cumbersome when the number of
model parameters is large.
[23] On other hand, the Gibbs sampling, which is based

on the conditional distributions of the target distribution
(r(m) in our case), does not require any tuning. Moreover, a
model perturbation is always global in this scheme. Though
additional sampling is required to estimate the conditional
distributions, we find the Gibbs sampling more appealing,
and our MCMC implementation is based on the so-called
random-scan Gibbs sampler [e.g., Liu, 2001].
[24] We choose to express a priori model constraints as

upper and lower limits on model parameters m = {mkjk = 1,
2, . . ., K}, i.e.,

mL
k � mk � mU

k : ð18Þ
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By keeping a Markov chain within these bounds, model
sampling is automatically restricted where p(m) = c ( 6¼0).
This sampling with the a priori probability can consider-
ably enhance the efficiency of MCMC simulation [e.g.,
Mosegaard and Tarantola, 1995], but our problem has one
unique difficulty to overcome; there are no useful a priori
bounds on the scaling constants Ai in equations (1)–(4).
Because the activation energy and volume are within the
exponential function, even small changes in them could
enormously change the magnitude of these scaling con-
stants. Thus even though we can derive bounds on the
scaling constants based on the bounds of activation energy
and volume, such bounds range over many orders of
magnitudes and are simply too wide to be useful. Having the
scaling constants in a proper range is, however, essential for
data fitting. Otherwise, quite a large number of samplings
would be wasted because of unacceptably large c2, and a
MCMC simulation would be very inefficient. For this
reason, we treat the scaling constants differently from the
rest of model parameters. A short summary on this special
treatment is the following (see Appendix B for details).
When model parameters other than the scaling constants are
given, we first calculate the ‘best fit’ constants by standard
linear regression because the flow law (equation (5)) is linear
in Ai. By standard linear regression, however, model-
dependent variances (e.g.,

P
i rvar{i, sl

jm} in equation (9))
are ignored, so the resulting constants are not best fit in terms
of the cost function defined with all of experimental
uncertainties. We then randomly perturb these ‘best fit’
constants within prescribed bounds. Thus we do have a priori
constraints on all of model parameters, but our bounds on the
scaling constants are indirect. When mk corresponds to a
scaling constant, it should be interpreted as a perturbation to
the linear regression result, and equation (18) as bounds on
such perturbation. Note that linear regression is used here

only to accelerate MCMC simulations; it does not mean that
we are linearizing our inverse problem or introducing
additional assumptions.
[25] Important steps in our MCMC simulation are sum-

marized below. For a pseudo-random number generator, we
use Numerical Recipes’ ran2 function [Press et al., 1992].
[26] 1. Initialization. Draw K random numbers, rk, from

the interval [0,1] to set the initial model as

m0;k ¼ mL
k þ rk mU

k � mL
k

� �
;

for k = 1, 2,. . ., K.
[27] 2. Random scan. Pick one model parameter ran-

domly from {mkjk = 1, 2, . . ., K} and call it mr. The random-
scan Gibbs sampling requires that we know the conditional
likelihood:

L m0;1; . . . ;m0;r�1;mr;m0;rþ1; . . . ;m0;K

� 	� �
:

All parameters other than mr are fixed as in the current
model m0, and the conditional likelihood is a function of mr

only. From the interval [mr
L, mr

U], we draw P random
numbers and calculate corresponding likelihood values.
When P is sufficiently large, we can approximate the
conditional likelihood function by the rejection sampling
[von Neumann, 1951]. Save the highest likelihood as Lmax.
[28] 3. Gibbs sampling. Pick one random number from

the interval [mr
L, mr

U] and call it m0
r. Construct a trial model:

m0 ¼ m0;1; . . . ;m0;r�1;m
0
r;m0;rþ1; . . . ;m0;K

� 	
and calculate L(m0). Draw one more random number, s,
from the interval [0,1]. If s < L(m0)/Lmax, go to the next step.
Otherwise, start over this step.
[29] 4. Model update. Save the old model m0 and

redefine it with m0. Until the maximum number of iteration
is reached, go back to step 2.
[30] The efficiency of Gibbs sampling may be seen in

Figure 2, which compares the distribution of normalized c2

(i.e., c2/N where N is the total number of data) for the cases
of purely random sampling and Gibbs sampling. If random
sampling is not guided in any sense, the bulk of sampling is
spent in the unimportant parts of the model space. The
Gibbs sampling, on the other hand, explores important
models very effectively. A similar success can also be
achieved by other guided sampling schemes such as the
Metropolis algorithm, but we emphasize that the Gibbs
sampling does not require any tuning and is also global.
We use P = 100 to estimate the conditional distributions that
arise in the Gibbs sampling, and this hidden cost is well
compensated by this ease of use and by the success in
quickly collecting only good models from the entire model
space.
[31] If we denote our MCMC solutions and their misfits

by mq and cq
2, respectively, the model mean under the

normalization constraint (equations (14) and (15)) can be
approximated as

mean mf g �
XQ
q¼1

mq exp �c2
q=2

� �,XQ
q¼1

exp �c2
q=2

� �
; ð19Þ

Figure 2. The distribution of c2/N for two different
sampling schemes: (a) purely random sampling and (b) Gibbs
sampling. Shown here is for the MCMC simulation with
the dry deformation data from MK00 (see section 4.1 for a
full description).
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where Q is the total number of MCMC solutions. Other
statistical estimators can be approximated in a similar
manner. The scaling constants Ai need a special care; they
are tightly coupled with other parameters, especially
activation energies, and vary over many order of magni-
tudes. Their direct statistics is thus not very useful, even if
done in the logarithmic scale. We try to reduce its variation
by removing contribution from concurrent changes in other
parameters as:

Bi ¼ log10 Ai exp �Ei þ p0Vi

RT0

� �� �
; ð20Þ

where T0 is 1523 K and p0 is 0.3 GPa. This conversion is
important to have a compact distribution for the scaling
constants.
[32] Note that the inter-run biases, XM, are so-called

‘nuisance’ parameters in statistics. They are not what we
really want to know, i.e., not a part of the flow law we seek
to establish, but they still need to be determined to get the
flow law right. The nuisance parameters can be integrated
out by marginalization as:

r qkð Þ ¼
Z
MX

r qk ;XMð ÞdXM ; ð21Þ

where MX denotes the model space for XM. In our appro-
ximating strategywithMCMC solutions (e.g., equation (19)),
this corresponds to simply using all solutions irrespective of
the value of XM.

3. Data

[33] We compiled all of published subsolidus deformation
experiments on synthetic olivine aggregates with composi-

tions similar to Earth’s mantle (�Fo90) [e.g., Hart and
Zindler, 1986; McDonough and Sun, 1995]. Our compila-
tion consists of four different data sets: Karato et al. [1986]
(hereinafter referred to as KPF86), Hirth and Kohlstedt
[1995a] (HK95), Mei and Kohlstedt [2000a, 2000b]
(MK00), and Jung et al. [2006] (J06). Note that the experi-
ments briefly reported by Karato and Jung [2003] are fully
described in J06. We avoid including experiments with
natural dunites [e.g., Chopra and Paterson, 1984] because
controlled experiments are usually more difficult with such
samples. Experiments with pure forsterite [McDonell et al.,
1999] are also excluded because point defect chemistry and
thus kinetic properties appear to be very different between
forsterite (Fo100) and mantle olivine (Fo90) [Mei and
Kohlstedt, 2000a]. Two high-pressure (2 GPa) experiments
under a dry condition are reported by Jung and Karato
[2001] but not included here because of extreme heteroge-
neity in grain size distribution. There are more recent data on
dry olivine rheology using X-ray diffraction techniques up to
11 GPa [e.g., Li et al., 2004; Y. Nishihara et. al, Plastic
deformation of wadsleyite and olivine at high-pressures and
high-temperatures using a rotational Drickamer apparatus
(RDA), submitted to J. Geophys. Res., 2007], but they are
also excluded because the nature of uncertainties in these
high-pressure studies is not yet well understood. We will
discuss later the significance of these excluded high-pressure
data on the basis of supplementary inversions.
[34] The four data sets differ in various aspects of

experimental design and conditions. For example, KPF86
and J06 are constant strain rate experiments whereas HK95
and MK00 are constant load experiments. The identification
of ‘steady state’ is not straightforward in constant stress
experiments [e.g., Karato, 2007, Chap. 6], and we assume
steady state deformation for HK95 and MK00. The exper-
imental geometry is triaxial compression for KPF86, HK95,
and MK00, and simple shear for J06. In comparing results
from experimental data for different deformation geometry,
we make an assumption of isotropic plasticity and use the
Levy-von Mises formula [e.g., Karato, 2007, Chap. 3].
KPF86 was conducted at single temperature and pressure
(1573 K and 0.3 GPa). Later studies were conducted over a
range of temperature and pressure (Figure 3), so they are
useful to constrain activation energy and volume. However,
we should expect large uncertainty in those parameters
because ranges so far explored are still narrow. Oxygen
fugacity is controlled by the Fe-FeO buffer in KPF86 and
the Ni-NiO buffer in others. The activity of silica is fixed by
the presence of a small amount of enstatite, except for
KPF86. These differences in the chemical environment
may cause systematic bias in strain rates [e.g., Hirth and
Kohlstedt, 1995a]. In addition, the presence of melt is not
very well constrained. We chose the results from ‘melt-
free’ samples, but a small amount of melt (<0.1%) is hard
to detect although it may have an important effect on
deformation [Takei and Holtzman, 2006].
[35] Deformation experiments are usually run at either

‘dry’ or ‘wet’ condition. The dry condition is also referred
to as ‘nominally anhydrous’, because a sample may still
contain a trace amount of water below the detection limit of
FTIR (Fourier transformation infrared spectroscopy). Under
the wet condition, samples are fully saturated with water, if
free water is present during an experiment. If this condition

Figure 3. Pressure and temperature conditions for the four
experimental studies compiled for this study: KPF86
[Karato et al., 1986] (circle), HK95 [Hirth and Kohlstedt,
1995a] (triangle), MK00 [Mei and Kohlstedt, 2000a, 2000b]
(square), and J06 [Jung et al., 2006] (star).
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is met, then one can calculate the water content in the
sample from the experimental results of water solubility
[e.g., Kohlstedt et al., 1996; Zhao et al., 2004]. As the
formula of Zhao et al. [2004] is based on the new FTIR
calibration by Bell et al. [2003], we also adopt this calibra-
tion and multiply a factor of 3.5 to the water content data of
KPF86 and J06, which are based on the traditional calibra-
tion by Paterson [1982]. The choice of calibration is merely
a matter of convention here; our estimated flow law could
easily be modified for a different calibration by trivial
changes in the scaling constants Ai. Note that the assump-
tion of saturation with water was confirmed in some studies
(e.g., KPJ86 and J06) but not in others such as MK00. This
could cause systematic errors as we will discuss later.
[36] KPF86, HK95, and MK00 used a gas-medium

apparatus with an internal load cell (e.g., the Paterson
apparatus). We note that the resolution of mechanical data
is much higher for those gas-medium apparatus data than
for results using any other techniques. However, there are
major limitations with the data from this type of apparatus.
Most important is the limitation in the maximum pressure
(�0.5 GPa). Because the water effect is highly sensitive to
the total pressure, which changes water fugacity, and be-
cause the nature of water changes from nearly ideal gas
below �0.5 GPa to highly non-ideal gas above �0.5 GPa,
it is critical to use data spanning a pressure range over
�0.5 GPa [Karato, 2006]. In addition, the determination
of the pressure effect (at a constant water fugacity or water
content) also requires a large span of pressure because the
pressure effect is exponential. However, quantitative ex-
perimental studies on high-temperature rheology are chal-
lenging and currently available data at pressures beyond
0.5 GPa is limited. At present, the only data on water effects
beyond 0.5 GPa is from J06 (up to 2 GPa), which were
obtained with a Griggs apparatus. Though the uncertainty in
these data is worse than obtained using a gas-medium
apparatus, data to constrain both water and pressure effects
can be obtained only from these experiments at present. We
note that in addition to the poorer resolution in stress and
strain rate measurements by this high-pressure study, another
complication is a possible bias caused by plastic anisotropy.
Currently, little is known about plastic anisotropy in olivine
aggregates. The few data obtained by Zhang et al. [2000]
suggest a weak anisotropy that depends on the degree of
dynamic recrystallization. In this study, we make the
admittedly rough approximation of plastic isotropy, the
validity of which needs to be evaluated in future. The main
purpose of this study is to explore the importance of a
rigorous statistical analysis using a broad range of experi-
mental data, and we emphasize that our conclusions depend
critically on the chosen data sets as well as the assumptions
employed.

[37] Our compilation includes 14 experimental runs with
81 data under dry conditions (six runs from KPF86, three
from HK95, and five from MK00), and 26 runs with 130
data under wet conditions (10 from KPF86, 15 from MK00,
and one from J06). We use only nominally melt-free data
from HK95 (PI-35, PI-146, and PI-81). More melt-free data
are reported in their companion paper [Hirth and Kohlstedt,
1995b], but their grain sizes have not been measured
(G. Hirth, pers. comm., 2006), so they cannot be used for
our global inversion. MK00 is the largest data set, providing
127 deformation data (35 dry and 92 wet data). MK00
reports only the initial and final grain sizes for multistep
experimental runs, and we use the grain growth equation
of Karato [1989] to interpolate between them. Some of
their experiments do not report even these bounding grain
sizes, but initial and final (average) grain sizes were
usually 15 ± 1 microns and 18 ± 1 microns, respectively
(S. Mei, pers. comm., 2006), so we supplement grain size
data accordingly with additional uncertainty. Note that we
only consider uncertainty in average grain size, which is
usually smaller than the standard deviation of grain size
distribution. J06 reports 17 data, but some of them suffer
from major experimental difficulties. After grain size infor-
mation was supplemented (H. Jung, pers. comm., 2006),
only seven of them (JK11, JK18, JK24, JK26, JK40, JK41,
JK43) were found to be appropriate for our purpose.
[38] Note that an experimental run should contain more

than one data point; otherwise, a misfit between data and
flow-law prediction could completely be absorbed by
exp(Xm), and such a run does not contribute to constrain
the flow law in the present framework. In other words, a
single deformation datum alone cannot prove its reproduc-
ibility. For this reason, runs 4604, 4688, 4885, and 4920 in
KPF86 and PI-17 in HK95 are excluded. None of experi-
mental runs in J06 contains more than one deformation
datum, so J06 data are collectively treated as one experi-
mental run in our compilation. In this case, we are assuming
that there is no inter-run bias among J06 data, but that there
can be some systematic differences with respect to other
deformation data.
[39] The uncertainties of experimental variables are

summarized in Table 1. Most of them are reported in the
original publications, and the rest is supplemented by
personal communication. The uncertainty of stress is
notably high for J06 because stress is estimated through
an empirical correlation with dislocation density. We are
conservative about the accuracy of grain size and assign
10% uncertainty. For MK00, we add another 10% uncer-
tainty when initial or final grain size is missing and has to
be roughly estimated as mentioned above. The accuracy of
water content is limited by that of FTIR, and we set the
uncertainty to 20% [Koga et al., 2003]. As discussed
above, the actual uncertainties of water content could be

Table 1. Summary of Experimental Errors

dT dP ds d _e dd dCOH

Karato et al. [1986] 10 K 5 MPa 2 MPa 1% 10% 20%
Hirth and Kohlstedt [1995a] 2 K 4 MPa 2 MPa 5% 10% -a

Mei and Kohlstedt [2000a, 2000b] 2 K 4 MPa 2 MPa 5% 10–30% 20%
Jung et al. [2006] 10 K 10% 15% 9–23% 10% 20%

aAll data of HK95 are from ‘dry’ experiments.

B02403 KORENAGA AND KARATO: EXPERIMENTAL BOUNDS ON OLIVINE RHEOLOGY

8 of 23

B02403



much larger, and the inter-run bias exp(Xm) tries to absorb
such ‘hard-to-quantify’ uncertainties.

4. Results

[40] In this section, we present a series of MCMC
simulations on different data sets with a variety of simula-
tion constraints. To facilitate the understanding of this new
approach, we start with showing our inversion results for a
small subset of the compiled data and progressively ap-
proach the most comprehensive inversion. The robustness
of our final results may be understood by comparing
different inversion results.
[41] The dry and wet versions of the olivine flow law

were estimated separately. For any type of inversion, we ran
ten parallel MCMC simulations with different starting
models, and each run consists of 106 Gibbs sampling.
Because starting models were constructed randomly, they
usually had very large data misfits, but the misfit quickly
decreased as the iteration proceeds. To ignore bad models in
this early stage, we discarded the first 104 samples. More-
over, because the random-scan algorithm changes only one
parameter per step, neighboring steps were closely corre-
lated so we sampled every 103 models to gather more
uncorrelated models. For each inversion, therefore, we have
�104 MCMC ensembles.
[42] The a priori bounds on model parameters are as

follows: 1.5 � pi � 3, 2 � ni � 5, 0.5 � ri � 2, 100 � Ei �
1000 (in kJ mol�1), 0 � Vi � 30 (in cm3 mol�1), 10±1

bounds on perturbations to ‘best fit’ Ai, and 10±0.5 bounds
on inter-run biases exp(Xm). For most of these parameters,
there is no real theoretical bound, and the above ranges were
chosen to encompass so far proposed values [e.g., Bai et al.,
1991; Karato and Wu, 1993; Mei and Kohlstedt, 2000a;
Hirth and Kohlstedt, 2003]. As shown later, results with
wider bounds suggest that the a priori bounds are essential
to obtain a stable estimate for some model parameters. In
this case, the a priori bounds may be regarded as one form
of regularization, which can guarantee a ‘sensible’ flow law
even from noisy data.
[43] Whereas the statistical distribution of a large number

of MCMC ensembles fully describes our current knowledge
of olivine deformation, it would be more convenient to have
a more compact representation. After demonstrating the
convergence of our MCMC simulations, we seek to estab-
lish such a representation by combining the principal
component analysis and linear regression.

4.1. Rheology of Dry Olivine Aggregates

[44] The five experimental runs from MK00 (PI-181,
PI-220, PI-360, PI-394, PI-567) were conducted at varying
temperature and pressure conditions, so in principle one can
invert for all of relevant flow-law parameters. Before using
all of experimental runs from different research groups, it
would be instructive to see how our inversion works for the
MK00 data alone and how well they can constrain those
parameters.
[45] Among those five runs, PI-181, PI-394, and PI-567

were all conducted at 1523 K and 0.3 GPa. PI-220 was also
at 1523 K, but the pressure was varied from 0.1 to 0.3 GPa,
under relatively low stress conditions. PI-360 was at 0.3 GPa,
and the temperature was varied from 1473 K to 1573 K under
high stress conditions. Therefore we expect that this data set
could potentially constrain the pressure dependency for dry
diffusion creep (i.e., V1) and the temperature dependency for
dry dislocation creep (E3) but provides only indirect and
weak constraints on V3 and E1 (note that diffusion creep is
always activated, even at high stresses, so the data have non-
zero sensitivity to E1).
[46] In addition to the standard MCMC simulation, we

conducted two more simulations, one fixing inter-run biases
to zero (‘‘-noX’’) and the other ignoring all parameter
uncertainties other than for strain rates (‘‘-se’’ for ‘simpli-
fied error’). Note that inter-run biases were still modeled in
the latter. The results of these three inversions are compared
in Figure 4, in terms of the distribution of the corresponding
MCMC solutions.
[47] The normalized c2 for the standard simulation is

clustered around �0.6, indicating that the given data are
fitted by an estimated flow law within uncertainty on
average. The grain-size exponent p1 is estimated to be
�3, and the activation energy for dislocation creep is
�500 kJ mol�1, both of which are in good agreement to
the original estimate by Mei and Kohlstedt [2000a, 2000b].
The activation volume for diffusion creep (V1) appears to
favor low values (<10 cm3 mol�1). One notable difference
from previous studies [Mei and Kohlstedt, 2000b; Hirth and
Kohlstedt, 2003] is the stress exponent n3, for which a
relatively high value (�5) is preferred, whereas the canon-
ical value has long been considered to be �3.5. As
expected, other parameters (E1 and V3) are much more

0

0

e

0

0

Figure 4. Histograms of 104 MCMC solutions with the
dry MK00 data: (left) the standard simulation, (middle) the
simulation with no inter-run biases, and (right) the
simulation with neglecting rvar{i, sl

jm}.
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loosely constrained. Inter-run biases are estimated to be
small, in the range of 10�0.15 to 100.06 (with the run PI-181
as a reference). From this, one would expect that imposing
zero bias should not result in a very different flow law, and
this is indeed the case (Figure 4, middle panel). On the other
hand, neglecting the uncertainties of temperature, pressure,
grain size, and stress resulted in a substantially different
estimate (Figure 4, right panel). First of all, the normalized
c2 is far greater than unity, suggesting that the assumed
statistical model misses some important sources for data
misfit. Second, the distribution of MCMC solutions is much
more sharply defined, giving a false impression that the
flow-law parameters are tightly constrained. Accounting for
all of experimental uncertainties is important to properly
define the extent of the permissible parameter space.
[48] All of these simulations consistently show that the

best fit stress exponent n3 is noticeably higher than 3.5, and
the mean value from the standard simulation is �4.58. In
Figure 5, all data are normalized to our reference dry
conditions (T = 1523 K, p = 0.3 GPa, and d = 15 mm)
and are compared with the best fit flow law based on the
standard simulation. In this figure, all of experimental
uncertainties are summed into the error bars of strain rate.
We use this simple visualization throughout this paper. Note
that this is for plotting purposes only, and we are not
redefining the uncertainty of strain rate. Figure 5 indicates
that diffusion creep has a nontrivial contribution even at the
highest stress produced, so the determination of the stress
exponent relies heavily on how accurately diffusion creep is
estimated, or more precisely, how properly a global inver-
sion is set up. Whether the exponent is 3.5 or 4.5 may be a
subtle issue in terms of fitting data (see Figure 5), but this
difference corresponds to two orders of magnitude differ-
ence in effective viscosity when extrapolating from 100 MPa
to 1 MPa. The estimated stress exponent suggests that
dislocation creep under dry conditions may be controlled

by slip on the (010)[001] system [Bai et al., 1991, Table 1].
Another possibility is that high stress data may also be
influenced by the Peierls mechanism, which could make the
stress exponent apparently high. To test this idea, we also
conducted another set of MCMC simulation by restricting
data to sII < 100 MPa (or s1 � s3 < 173 MPa), but our
inference on n3 became only more blurred, with no partic-
ular preference toward a lower value.
[49] We then proceeded to include the rest of the dry

deformation data. Figure 6 compares the results with three
different data sets (MK00 only, MK00 + HK95, and MK00
+ HK95 + KPF86 (‘‘all dry’’)). Also shown is the result for
all data but with wider a priori bounds (‘‘-wb’’) on some
parameters (max(p) = 5, max(n) = 6, and max(V) = 60). The
normalized c2 increased to �2 when the HK95 data were
included. Ideally, we would like to have c2/N < �1, so this
slightly large misfit may indicate that merging different data
sets requires more than simple bias correction. It is probably
too simplistic to expect that a single number exp(Xm) to
absorb all factors related to inter-run differences.
[50] Figure 6 shows that our inference gradually sharpens

as we add more experimental runs, most notably for p1, E1,
and n3. The simulation with the wider bounds, however,
reveals that the tight distribution of the grain-size exponent
at �3 is simply because of the a priori upper bound. When
the upper bound was extended to 5, the distribution shifted
to the new bound. This implies that p1 � 3 is not demanded
by the data; it is merely the best choice from the given range

Figure 5. Stress vs. strain rate relationship for the dry
MK00 data normalized at the reference dry condition,
shown with best fit flow laws. The error bar of strain rate
includes all other experimental uncertainties. Bias correc-
tion is also applied.

0

0

0

0

Figure 6. Histograms of 104 MCMC solutions from four
different simulations with dry experimental runs. ‘‘MK00
dry’’ is the same as shown in the left panel of Figure 4.
‘‘MK + HK dry’’ is the simulation with the MK00 and
HK95 data. ‘‘all dry’’ and ‘‘all dry-wb’’ are the simulations
with all of dry experimental runs with the standard and
extended a priori bounds, respectively.
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(from 1.5 to 3). In other words, the given data do not have
enough resolution to keep the grain-size exponent within a
theoretically plausible range. There seems to be some trade-
off between p1 and E1, and the proper a priori bounds on
p1 are important for a stable inversion. On the other hand,
n3 � 5 appears to be more robust. The activation volumes
remain poorly constrained even with all data.
[51] Inter-run biases (with respect to MK00’s PI-181)

estimated by the standard simulation with all dry data are
shown in Figure 7a. The strain rates from HK95 are
generally higher than those from MK00, whereas KPF86
data tend to have lower strain rates. Bias correction was not
important for the inversion with the MK00 data alone, but it
is essential for this larger data set.
[52] Because the activation volumes V1 and V3 are so

poorly constrained, we also conducted two exploratory
MCMC simulations including the high-pressure deforma-
tion data of Jung and Karato [2001]. The runs JK19 and
JK21 are collectively referred to as the JK01 data. As noted
in section 3, this data set is characterized by highly
heterogeneous grain-size distributions. In the dislocation
creep regime, grain size was controlled by dynamic recrys-
tallization, but under a dry condition, the kinetics of this
recrystallization was so slow that it was difficult to achieve
a steady state, homogeneous grain-size distribution during a
deformation experiment. JK01 used a single crystal as a
starting material, and the reported grain size of �3 mm
refers to the average grain size of partially recrystallized
regions. Thus an ‘effective’ grain size for the deformed
sample as a whole could be higher. We first ran a simulation
with the reported grain sizes (‘‘all + J dry’’), and then ran
another simulation with the grain sizes increased by a factor
of ten (‘‘all + Jx dry’’). The results are compared with the
standard ‘‘all dry’’ simulation in Figure 8.
[53] Adding the high-pressure data drastically modified

the estimate of activation volumes. Both activation volumes
(V1 and V3) are clustered around the upper bound (30 cm3

mol�1) for the ‘‘all + J’’ simulation. The high activation

volume for diffusion creep is most likely due to taking the
reported grain size at face value, because increasing the
grain size by a factor 10 (‘‘all + Jx’’) brings our inference on
V1 back to a much less constrained distribution, virtually
identical to what is obtained without the high-pressure data.
This amplification of grain size is an arbitrary manipulation
and should be regarded as a simplistic sensitivity test, but it
successfully placed the JK01 data into the dislocation creep
regime without deteriorating our estimate on diffusion
creep. The high activation volume for dry dislocation creep
(V3 � 25–30 cm3 mol�1) appears to be robust. This is in
direct conflict with what has been suggested by more recent
experimental studies at higher pressures [e.g., Li et al.,
2004].

4.2. Rheology of Wet Olivine Aggregates

[54] To establish the olivine flow law under wet condi-
tions, we proceeded in a similar manner to the previous
section. We first conducted three types of MCMC simula-

Figure 7. Mean values and one standard deviations for
estimated inter-run biases for (a) ‘‘all dry’’ and (b) ‘‘all wet’’
simulations, plotted as a function of experimental run id, m.

Figure 8. Histograms of 104 MCMC solutions from
supplementary simulations with additional high-pressure
data (right two panels). ‘‘all+J dry’’ denotes the simulation
in which the reported fine grain sizes for the JK01 data are
used as is. The grain sizes are increased by a factor of 10 in
the simulation ‘‘all+Jx dry’’. The histogram for the standard
simulation is also shown for comparison (left panel).
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tions, using only the MK00 data (Figure 9). The importance
of inter-run biases for these wet data is clear from Figure 1,
and in fact whether biases are modeled or not resulted in
very different estimates for some parameters, most notably
the water-content exponents r2 and r4. A conventional value
for the water-content exponent is �1, for both diffusion and
dislocation creeps, but our standard simulation (‘‘MK00
wet’’) indicates that these exponents are more likely to be
�2. The inversion with simplified error (‘‘-se’’) once again
demonstrates that accounting for all of experimental uncer-
tainties is essential to properly estimate flow-law parameters
as well as their uncertainties.
[55] The high water-content exponents may be surprising,

but as shown later, they turn out to be persistent even with
larger data sets. To understand the cause of discrepancy with
previous estimates, we focused on the following four runs
fromMK00: PI-107, PI-184, PI-569, and PI-204 (Figure 10).
All of these runs were conducted at 1523 K but at different

pressures (thus different water contents); PI-107 was at
0.3 GPa, PI-184 at 0.1 GPa, and PI-569 at 0.45 GPa. These
three runs are what Mei and Kohlstedt [2000a] used to
determine the exponent r2. PI-204 started at 0.1 GPa, and
the pressure was gradually increased to 0.3 GPa. PI-204 was
conducted with a nearly constant stress (s1 � s3 � 28 MPa,
or sII� 16MPa), so we chose the reference stress of 16MPa.
Using the estimated flow law, we first normalized these four
runs to the reference stress (Figure 10a), then corrected for
different grain sizes (Figure 10b), and finally corrected for
the pressure effect using the estimated activation volumes
(Figure 10c). In Figure 10c, the trend exhibited by PI-204 is
clearly much steeper than r2 = 1 and closer to r2 = 2, whereas
the trend composed by other three runs may be close to r2 = 1.
It is thus not surprising that Mei and Kohlstedt [2000a]
estimated r2 to be �1, but their estimation method implicitly
assumes that inter-run biases are negligible. As can be seen
from Figure 1, this is an unwarranted assumption especially
for the wet deformation data. When estimated inter-run
biases were applied, all runs became consistent with r2 � 2
(Figure 10d). Note that the biases were not determined just
to align the three runs with PI-204. In our MCMC simula-
tion, inter-run biases are estimated to make the entire data
set as internally consistent as possible, by simultaneously
taking into account the variation of strain rate with respect
to temperature, pressure, grain size, stress, and water con-
tent. Our treatment of inter-run bias is, however, still
preliminary (i.e., assumed to be constant during an exper-
imental run), and a more careful experimental study is
essential to finalize our estimate on the water-content
exponent.
[56] Adding more experimental runs from KPF86 and J06

generally resulted in reducing the uncertainty of flow-low
parameters (‘‘MK + K wet’’ and ‘‘all wet’’ in Figure 11).
The only exception is the grain-size exponent p2. With all
relevant runs, the stress exponent n4 is now defined around
3.6, the water-content exponents are both likely to be �2,
and the activation volume for dislocation creep (V4) appears
to be well constrained to be <�10 cm3 mol�1. Our inference
on activation energies was not noticeably improved, and
they remain relatively broadly defined as E2 = 390 ± 50 kJ
mol�1 and E4 = 520 ± 100 kJ mol�1. Similarly, the
activation volume for diffusion creep is broadly defined to
be >�15 cm3 mol�1. Inter-run biases (with respect to
MK00’s PI-107) estimated by the standard simulation with
all wet data are shown in Figure 7b.
[57] By extending the a priori bounds as we did in the dry

case (max(p) = 5, max(n) = 6, max(r) = 4, and max(V) =
60), one can see that some of these parameters, especially
those for dislocation creep, cannot be stably estimated
without such bounds (Figure 11, right panel). Some param-
eters (p2 and n4) exhibit bimodal distributions, indicating
that this minimization problem has at least two significant
local minima. Compared to dry deformation data, wet
deformation data have an additional uncertainty due to
water concentration, which provides an extra space for
parameter uncertainties. Whereas diffusion creep parameters
are still estimated reasonably (i.e., similar to the standard
simulation result) except for the activation volume, dislo-
cation creep is not. Thus regularizing our highly nonlinear
inversion is more important for this wet case.

Figure 9. Histograms of 104 MCMC solutions with the wet
MK00 data: (left) the standard simulation, (middle) the
simulation with no inter-run biases, and (right) the
simulation with neglecting rvar{i, sl

jm}.

B02403 KORENAGA AND KARATO: EXPERIMENTAL BOUNDS ON OLIVINE RHEOLOGY

12 of 23

B02403



4.3. Testing Convergence and Consistency

[58] We take the results from the standard simulations
with all dry and wet data (shown as ‘‘all dry’’ in Figure 6
and ‘‘all wet’’ in Figure 6) collectively as our best
estimate on the olivine flow law. We then computed two
different diagnostics to see whether these simulations have
successfully converged. One is the autocorrelation function
(Figure 12), which is the correlation between a given
Markov chain shifted by a certain number of steps (called
‘lag’). The autocorrelation of a goodMarkov chain decreases
quickly with an increasing lag. Figure 12 shows that the
autocorrelation of our MCMC simulation becomes virtually
zero within a lag of �100–200 for most of model param-
eters. Activation energies require longer lags (�600). This is
because, compared to other parameters, it is more difficult to
change them randomly; even a small change in activation
energy could affect the cost function considerably. Because
we sampled every 103 models, this behavior of autocorrela-
tion indicates that sampled solutions are very close to be
statistically independent.
[59] The second diagnostic is a comparison between ten

parallel runs (Figure 13). We calculated the mean and
standard deviation of model parameters for each MCMC
run, and as Figure 13 shows, the results of those parallel
runs are almost indistinguishable from each other. We are
thus reasonably confident in having explored the entire
model space, and the distribution of our MCMC solutions

should correspond closely to the a posteriori probability
distribution r(m).
[60] As noted in section 2.1, we assumed that the wet

deformation data are characterized by high enough water
concentrations, so they can be modeled solely by the wet
flow law. To test this assumption, we compared the wet
deformation data with those predicted by the dry flow law at
the same temperature, pressure, stress, and grain size con-
ditions (Figure 14). Except for two data points, the observed
strain rates are larger than or equal to the predicted ones,
supporting our assumption. Note that quite a few data plot
on the dry prediction, and they are all from experiments
conducted at 0.1 GPa (i.e., low water content). That is, these
low-pressure wet experiments were conducted in the vicin-
ity of a dry-to-wet transition. As far as our assumption for
this transition (equation (7)) holds, this does not pose any
problem; deformation at this transition can be modeled
either by the dry or wet flow law, and it is modeled by
the wet flow law in our strategy. If instead equation (6) is
found to be more appropriate, however, a greater care would
be required to model these low-pressure data.
[61] Our MCMC simulations have resulted in not only

quantifying the uncertainty of flow-law parameters but also
revising some of parameters themselves. Our statistical
framework as summarized by equation (9) is by far the
most comprehensive one, and these findings are the product
of interpreting all of existing high-quality deformation data

Figure 10. Wet experimental runs from MK00 (PI-107, PI-184, PI-569, and PI-204) are plotted in
the water content vs. strain rate space with stepwise normalization. All runs are conducted at 1523 K.
(a) Corrected for variations in stress (normalized to s = 16 MPa). (b) Corrected for grain size effect
(normalized to d = 15 mm). (c) Corrected for pressure effect (normalized to P = 0.3 GPa). (d) Corrected for
inter-run biases.
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in terms of the composite flow law (equation (5)), by
exploring the entire model space. Perhaps the optimal way
to confirm our results is to conduct deformation experi-
ments over wider temperature and pressure ranges, which
should become possible in future.
[62] In Figures 15 and 16, we compare ‘observed’ strain

rates with the prediction of the estimated flow law in a
variety of different ways. Note that the ‘observed’ strain
rates in these plots are already modified by the estimated
flow law. For example, when we want to plot data in the
grain-size versus strain rate space at a given reference state
in order to visualize grain-size sensitivity (e.g., Figures 15a
and 15b), data must be normalized to the reference state by
correcting differences in temperature, pressure, stress, and
water content, for which we need to use a flow law. This
sort of visualization or data normalization, therefore, can be
done only after all of relevant flow-law parameters are
determined. If this guideline is not followed and if some
parameters are instead assumed for normalizing data, such
normalization might lead to an erroneous estimate on other

parameters. In these comparison plots, we show both dry
and wet cases, or low-stress and high-stress cases, or the
combination of both. The prediction of the flow law as well
as the contributions of relevant creep mechanisms are
shown, and these plots support that the new flow law is
consistent with experimental data over a range of experi-
mental conditions. Moreover, these plots suggest that si-
multaneously inverting for both diffusion and dislocation
creeps is important not only for the stress exponent but also
for the activation energies and volumes. On the other hand,
simultaneously inverting for both dry and wet flow laws is
not essential as long as equation (7) is correct. If we
parameterize the flow law differently, however, we would
have a different situation, so it is important to develop a
better theoretical model for this transition.

4.4. Statistical Representation of Olivine Rheology

[63] The 104 MCMC solutions produced in the previous
section are distributed over the 8-dimensional model space
for the dry flow law and the 10-dimensional space for the
wet flow law, and it is desirable to find a more compact
representation for the model subspace that encompasses
these solutions. To this end, we conducted the principal
component analysis (PCA), which transforms the original
model parameters into a set of new, uncorrelated variables
(called principal components) in order of decreasing signif-
icance [e.g., Gershenfeld, 1998]. The significance of a
particular principal component is measured by its eigenvalue,
and Figure 17 shows the eigenvalues of all principal
components normalized by the largest one. For both dry
and wet cases, the last two components have eigenvalues
smaller than 10% of the largest one, indicating that the true
dimension of the model subspace is approximately 6 (dry)
and 8 (wet), respectively. In other words, among 8 (dry) or
10 (wet) flow-law parameters, two model parameters are not
linearly independent from other parameters, so any set of
two parameters can be expressed by a linear combination
of the other parameters. This result may be apparent from
how the scaling constants Ai are constrained by data fit
(Appendix B). Because we cannot reduce the dimension-
ality of the model subspace further, the uncertainty of flow-
law parameters other than the scaling constants do not
correlate notably to each other. That is, one can choose
values for pi, ri, ni, Ei, and Vi, randomly from their a
posteriori distributions (‘‘all dry’’ in Figure 6 and ‘‘all wet’’
in Figure 11), and the combination of these random picks
should still be able to explain experimental data as long as
Ai (or Bi) are chosen properly.
[64] Our first task was therefore to describe the a posteriori

distributions of these 14 parameters. As some of these
distributions deviate considerably from the Gaussian distri-
bution, we chose to use the median and interquartile range
(IQR). IQR is based on quartiles and is a stable measure of
statistical dispersion. The first quartile (Q1) is the value that
cuts off the lowest 25% of data, the second quartile (Q2 or
median) cuts data in half, and the third quartile (Q3) cuts off
the highest 25%. IQR is defined as Q3 � Q1. Table 2
summarizes the median, Q1, and IQR for the 14 flow-law
parameters. By doing this, we are essentially neglecting the
lower and upper 25% of the probability distribution, which
is our compromise for a compact statistical description.

Figure 11. Histograms of 104 MCMC solutions from four
different simulations with wet experimental runs. ‘‘MK00
wet’’ is the same as shown in the left panel of Figure 9.
‘‘MK+K dry’’ is the simulation with the MK00 and KPF86
data. ‘‘all wet’’ and ‘‘all wet-wb’’ are the simulations with
all of wet experimental runs with the standard and extended
a priori bounds, respectively.
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[65] The normalized scaling constants Bi were then mod-
eled by a linear combination of these parameters qk:

Bi ¼ a0;i þ
X14
k¼1

ak;i
qk � qmk
Dqk

� �
; ð22Þ

where qk
m and Dqk denote the median and IQR of qk,

respectively, and ak,i are the best fit coefficients determined
by linear regression with the MCMC solutions. These
coefficients are also listed in Table 2, completing our
statistical representation of the flow law for olivine aggre-
gates.
[66] Note that we used two runs from MK00 (PI-181 for

dry runs and PI-107 for wet runs) as a reference to define
the biases of other experimental runs, and if we use a
different run as a reference, the scaling constants must be
adjusted up or down uniformly. Estimated inter-run biases
are distributed in a random fashion around the chosen
reference (Figure 7), and this type of uncertainty in the
scaling constants is probably about a factor of �2.
[67] As we emphasized in Introduction, it is important to

appreciate the limitation of our knowledge and explore its
consequences in geodynamical modeling. Using just one
particular flow law is not sufficient. There are a number of
equally valid but different flow laws with different geo-
dynamical consequences. Model predictions with composite
mantle rheology may be called robust only when they are

based on common features among those different results.
Generating a number of flow laws is straightforward with
Table 2. For each of the 14 flow-law parameters, pick a
number randomly from the interval bounded by Q1 and Q3

(=Q1 + IQR), and then calculate Ai using equations (22) and
(20). This provides all parameters needed by the flow law of
equations (1)–(4).
[68] Profiles of effective viscosity (�s/ _e) for a few

illustrative cases were calculated in two different ways
and are compared in Figure 18. One was calculated directly
from 104 MCMC solutions, and the other from 100 ran-
domly generated flow laws using Table 2. For the uncer-
tainty of predicted viscosity profiles, one standard deviation
is used for the former whereas the total range (i.e., from the
minimum viscosity to the maximum one at any given depth)
is used for the latter. As seen in Figure 18, these two
different approaches yield similar predictions both for the
ridge and cold geotherms. Taking the total range instead of
one standard deviation appears to compensate well the
neglect of the lower and upper 25% of the a posteriori
distributions when summarizing our MCMC simulations in
the form of Table 2, though uncertainties associated with the
dry diffusion creep (mostly originating in V1) tend to be
underestimated by the statistical representation. Figure 18
confirms that mantle viscosity can be affected substantially
by a change in the water content [Karato, 1986; Hirth and
Kohlstedt, 1996], and also suggests that this effect of water

Figure 12. Autocorrelation function (ACF) for representative MCMC runs with all dry and wet
experimental runs. (a) Grain-size exponents (p1 and p2) and water-content exponent for diffusion creep (r2).
(b) Stress exponents (n3 and n4) and water-content exponent for dislocation creep (r4). (c) Activation
energies (E1 � E4). (d) Activation volumes (V1 � V4).
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content is persistent in the dislocation creep regime through-
out the upper mantle.

5. Discussion and Conclusion

[69] Table 3 compares the flow-law parameters estimated
in this study with previous compilations by Karato and Wu
[1993] and Hirth and Kohlstedt [2003]. We first note that
the scaling constants Ai can vary easily by a few orders of
magnitude for a small change in activation energies Ei, so
comparison in terms of the scaling constants is not very
informative. As already described, this study conforms to
the previous studies for some parameters such as p1, p2, n4,
V1, and V3, but is substantially different for others, most
notably n3, r2, r4, and V2. Differences in activation energies
may not seem to be large because they have always been
associated with relatively large uncertainties, but this study
is the first to quantify their most likely values and uncer-
tainties by the fully global inversion. The activation energy
for dry diffusion creep (E1) is slightly lower than conven-
tionally thought, that for wet diffusion creep (E2) is slightly
higher and, more importantly, E2 is greater than E1. The
activation energies for dry and wet dislocation creeps (E3

and E4) are both higher than previous estimates by 50–
100 kJ mol�1. Note that Table 3 is shown here merely for
the sake of comparison. We emphasize the importance of
using the more complete statistical representation summa-
rized in Table 2.

Figure 13. Comparison of ten parallel MCMC runs. Some parameters are shifted up or down for clarity,
as indicated by the label on the vertical axis. Error bars indicate one standard deviation. (a) p1 (open
circle), p2 (solid circle), and r2 (solid triangle). (b) n3 (open circle), n4 (solid circle), and r4 (solid triangle).
(c) E1 (open circle), E2 (solid circle), E3 (open triangle), and E4 (solid triangle). (d) V1 (open circle),
V2 (solid circle), V3 (open triangle), and V4 (solid triangle).

Figure 14. Strain rates observed at wet experimental runs
are compared with those predicted by the dry flow law at
the same temperature, pressure, stress, and grain size
conditions (based on the ‘‘all dry’’ simulation result). The
error bar of strain rate includes all other experimental
uncertainties. Bias correction is also applied. If our
assumption behind equation (7) is correct, all data should
be plotted on or above the diagonal.
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[70] In order to estimate a composite flow law, we
combined different experimental runs and even different
experimental studies, and this approach is markedly dif-
ferent from a more conventional approach, in which flow-
law parameters are estimated sequentially from more
restricted data sets. For example, activation energy has

often been estimated from a single experimental run, in
which temperature is varied but other variables are kept
constant [e.g., Mei and Kohlstedt, 2000a]. As our analysis
suggests, however, the contribution of diffusion creep is
not negligible even at high stresses (Figures 16b and 16d),
so an estimate can be made only for an ‘apparent’

Figure 15. Comparison of experimental data (circles) with the estimated flow law (thick gray curves) in
(a,b) grain size versus strain rate, (c,d) stress versus strain rate, and (e,f) water content vs. strain rate. Error
bar includes all experimental uncertainties and bias correction is applied. References states are given in
the plots. Open and gray circles denote dry and wet experiments, respectively. In Figures 15e and 15f, the
predictions by the dry deformation mechanisms are shown to indicate the threshold water content for the
dry-to-wet transition (�300 ppm H/Si).
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activation energy, which by itself is not very useful. One
may wish to subtract the contribution of diffusion creep
beforehand to estimate the activation energy of dislocation
creep, but the flow law of diffusion creep has some finite
uncertainty, which should contribute to the uncertainty of

the estimated activation energy. Handling error propaga-
tion would thus be quite cumbersome in this sequential
approach. By inverting for a composite flow law simulta-
neously, we can estimate separately the activation energies
of different creep mechanisms, with the interrelation of

Figure 16. Comparison of experimental data (circles) with the estimated flow law (thick gray curves) in
(a–d) inverse temperature versus strain rate and (e–h) pressure versus strain rate. Four cases are shown:
dry diffusion regime (a,e), dry dislocation regime (b, f), wet diffusion regime (c, g), and wet dislocation
regime (d, h). The meaning of symbols and curves are the same as in Figure 15.
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parameter uncertainty automatically taken care of. The
conventional approach may appear to be simpler or better,
but it is actually prone to yield misleading results when the
majority of data lie near the transition from diffusion to
dislocation creep, which is exactly the case for existing
data on olivine rheology. Of course, merging different
kinds of experimental data has to be done carefully. Our
approach with inter-run bias not only estimates all of flow-
law parameters simultaneously but also constructs the most
self-consistent data set at the same time by honoring
‘trends’ exhibited by individual runs (e.g., apparent acti-
vation energy in a temperature-stepping experiment).
[71] The exponents pi, ni, and ri as well as activation

parameters Ei and Vi are usually interpreted in terms of
relevant microscopic processes, so our results should also
affect such an interpretation. Our preferred flow law is
subject to future revision as new experimental results
become available, but our statistical framework will remain
useful to assimilate such new data and update the experi-
mental bounds. Figure 18 illustrates that although some

parameters remain poorly constrained, we can still draw
some robust conclusions on the rheological structure of the
upper mantle such as the large effects of dehydration [e.g.,
Karato, 1986; Hirth and Kohlstedt, 1996]. The astheno-
sphere is believed to contain a trace amount of water (�800
ppm H/Si in olivine [Hirth and Kohlstedt, 1996]), and wet
dislocation creep could be the dominant deformation mech-
anism throughout the upper mantle. At shallow depths
(<�70 km), oceanic mantle is dry due to dehydration upon
partial melting beneath mid-ocean ridges, but at these
depths, dry rheological properties are reasonably well con-
strained because the pressure effects are small.
[72] When running a numerical model with complex

rheology, it is important to map the uncertainty of an
assumed rheology to model uncertainty. Otherwise, it would
be unclear how much we could rely on the outcome of such
numerical modeling. This study should help to address this
issue for upper mantle dynamics. Even though some flow-
law parameters of olivine rheology still have large uncer-
tainties, other parameters are reasonably well defined. By
conducting numerical modeling with a large number of
possible flow laws, we should be able to identify which
aspects of model results are robust and which suffer from
flow-law uncertainties, and this sort of exercise could
motivate future experimental studies. Statistics is an impor-
tant interface between experimental rock mechanics and
theoretical geodynamics.
[73] Our approach is based on (1) modeling experimental

data by a composite flow law with all of experimental
uncertainties taken into account, and (2) exploring the
model parameter space extensively by efficient MCMC
sampling. The difference between our method and the
traditional global inversion method of Sotin and Poirier
[1984] is similar to the difference between a general
theoretical framework proposed by Tarantola and Valette
[1982a] and a more restricted case studied in depth by
Tarantola and Valette [1982b]. The method of Sotin and
Poirier [1984] is based on the latter, and implementing a
more general method is computationally more expensive.
MCMC simulations indeed require a very large number of
iterations, but it can be easily conducted with reasonable
computing resources available today. We emphasize, how-

Figure 17. Eigenvalues corresponding to principal com-
ponents for 8 (dry, open circles) and 10 (wet, gray circles)
flow-law parameters, normalized by the largest eigenvalue.

Table 2. Statistical Representation of Olivine Flow Law Ei are in kJ mol�1 and Vi are in cm3 mol�1

Parametersa Median Q1
b IQRc ak,1 ak,2 ak,3 ak,4

(k = 0) �3.7478 �9.0248 �14.9414 �17.5794
p1 2.97 2.95 0.04 0.0472 0 �0.0005 0
E1 258 232 54 0.0052 0 �0.0010 0
V1 7.2 3.1 10 �0.0009 0 0.0005 0
p2 2.66 2.45 0.39 0 0.4903 0 0.0022
r2 1.91 1.84 0.12 0 �0.3564 0 �0.0022
E2 377 337 88 0 �0.0143 0 �0.0101
V2 24.4 19.3 8.3 0 �0.0159 0 �0.0030
n3 4.92 4.86 0.11 0.0020 0 �0.2190 0
E3 607 578 58 0.0053 0 �0.0082 0
V3 13.3 6.4 14.5 0.0009 0 �0.0020 0
n4 3.70 3.48 0.45 0 0.0241 0 �0.8854
r4 1.95 1.90 0.08 0 �0.0016 0 �0.2328
E4 578 476 211 0 0.0005 0 0.0851
V4 3.6 1.6 4.7 0 �0.0022 0 0.0003
ap1 corresponds to k = 1, E1 to k = 2, and so on.
bFirst quartile.
cInterquartile range.
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ever, that our statistical framework is not complete even
though it is by far the most comprehensive one. For example,
the parameterization of inter-run bias is kept simple because
a more elaborate treatment requires more information on
experimental details, which may not always be available.
Moreover, how we should model a dry-to-wet transition in a
general flow law may be subject to discussion, and if we
could confidently propose a more appropriate functional
form on the basis of microscopic mechanisms, it would also
improve the reliability of inversion results.

[74] The present analysis has shown that the existing
experimental data and their analyses contain major limita-
tions. In particular, the rheological data under wet condi-
tions show a large scatter indicating that poorly controlled
‘hidden’ parameters have important influence on rheologi-
cal properties. Among others, the degree to which a sample
is saturated with water during an experiment needs to be
carefully analyzed in order to obtain results that can be
applied to geodynamic modeling. Also, the influence of
pressure is still very poorly constrained, mainly because of
the paucity of quantitative data under high pressures. In

Figure 18. Effective viscosity profiles predicted for the upper 300 km of Earth. The water content is
fixed to 0 and 800 ppm H/Si, respectively, for dry and wet cases. Grain size is 10 mm. For a ridge geotherm
(left panel), the potential temperature of 1623 K is used with the adiabatic gradient of 0.5 K km�1. A cold
geotherm (right) is for 100-Ma-old oceanic mantle as predicted by a half-space cooling model with the
thermal diffusivity of 10�6 m2 s�1. (a,d) Effective viscosity and its uncertainty based on 104 MCMC
solutions. s is assumed to be 1 MPa. (b,e) Same as Figures 18a, 18d but based on 100 random flow laws
generated from Table 2 (c,f) Same as Figures 18b, 18e but with s of 0.1 MPa. Diffusion limit cases
consider only diffusion creep mechanisms (equations (1) and (2)). Note that, for the uncertainty of
viscosity profiles, one standard deviation is used for Figures 18a and 18d, and the total range from the
minimum viscosity to the maximum one is used in other cases.
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addition, the influence of plastic anisotropy has not been
addressed in any detail yet. We conclude that a detailed
statistical analysis on uncertainties as well as better-con-
trolled experiments under wet and high-pressure conditions
are imperative for a better understanding of the rheological
properties of Earth’s mantle.

Appendix A: Relative Variance due to
Experimental Variables

[75] When we model data, yi, as a linear function of x,
i.e.,

yi ¼ aþ bxi; ðA1Þ

and when both xi and yi are subject to uncertainty, the misfit
between the data and the model prediction should be
measured as [e.g., Reed, 1989]:

c2 a; bð Þ ¼
X
i

yi � a� bxið Þ2

var yif g þ b2var xif g ; ðA2Þ

because

var yi � a� bxif g ¼ var yif g þ b2var xif g: ðA3Þ

[76] Similarly, to model observed deformation data _eobs
with equation (8) in the logarithmic scale, we need to
consider the following:

var log _ej � log
X
i

_ei s
j
l
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� X j
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� var _ejf g

_ejð Þ2
þ
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i
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where the first-order Taylor expansion is employed for
approximation and var {Xj} is zero because Xj is a model
parameter and not an observable. The first term is rvar { _ej},
and the second term can be further approximated with the
Taylor expansion as:

var
P

i _ei s
j
l

� �� 	P
i _ei s

j
l
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X
i

rvar i; sjl
� 	

; ðA5Þ

where rvar{i, sl
j} depends on the form of the i-th flow law.

All the flow laws under consideration (equations (1)–(4))
can be expressed in the following general form:

_ek ¼ Akd
�pksnkCrk

OH exp �Ek þ pVk

RT

� �
; ðA6Þ

for which we have

rvar k; sjl
� 	

¼
_ejkX
i
_eji

 !2

p2k
var djf g
djð Þ2

þ n2k
var sjf g
sjð Þ2

 
þ r2k

var C
j
OH

� 	
C

j
OH

� �2
þ Vk

RTj

� �2

var pj
� 	

þ Ek þ pjVk

R Tjð Þ2

 !2

var Tj
� 	1A:

ðA7Þ

Appendix B: How to Randomize Scaling
Constants in MCMC

[77] The flow law (equation (5)) is linear in Ai, i.e., it may
be expressed as

_ej ¼
X2
i¼1

f
j
i Ai; ðB1Þ

where fi
j represent the parts that are completely determined

once all flow-law parameters other than Ai are specified.
When the number of data is larger than 2, this constitutes an
overdetermined linear system, which can be solved for Ai by
the method of least squares. However, both _ej and fi

j vary
over many orders of magnitudes, so a direct application of
least squares to equation (B1) does not result in a reasonable
data fit in the logarithmic scale. The logarithmic version of
equation (B1) is, however, not linear in Ai. It can be solved
by a more time-consuming nonlinear inversion, but because
estimating ‘best fit’ Ai is a part of each Markov step (which
has to be iterated over >106 times), it is better to use a
quicker alternative. We find that the following successive
rescaling works reasonably well. First, we scale by the
strain rate error as:

bi ¼
X2
i¼1

F
j
iAi; ðB2Þ

where bi = _ej/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var _ejf g

p
and Fi

j = fi
j/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var _ejf g

p
. It is then

scaled as:

bi ¼
X2
i¼1

G
j
iCi; ðB3Þ

Table 3. Comparison With Previous Compilations Ei are in kJ

mol�1 and Vi are in cm3 mol�1

Mechanism Parameters

Karato
and

Wu [1993]

Hirth and
Kohlstedt
[2003]

This
Studya

Dry diffusion A1 109.38 109.18 105.25±0.03

p1 2.5 3 2.98 ± 0.02
E1 300 375 ± 50 261 ± 28
V1 6 2–10 6 ± 5

Wet diffusion A2 105.15 106.0 104.32±0.38

p2 2.5 3 2.56 ± 0.24
r2 - 1 1.93 ± 0.07
E2 240 335 ± 75 387 ± 53
V2 5 4 25 ± 4

Dry dislocation A3 10�1.22 105.04 106.09±0.11

n3 3.5 3.5 ± 0.3 4.94 ± 0.05
E3 540 530 ± 4 610 ± 30
V3 15–25 14–27 13 ± 8

Wet dislocation A4 101.0 101.95 100.6±0.5

n4 3.0 3.5 ± 0.3 3.60 ± 0.24
r4 - 1.2 1.95 ± 0.05
E4 430 480 ± 40 523 ± 100
V4 10–20 11 4 ± 3

aListed are mean values with one standard deviation. The standard
deviations of Ai’s are from those of Bi’s only and do not include the
uncertainty due to activation energy and volume.
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where Gi
j = Fi

j/ai, Ci = Ai ai, and

ai ¼ exp

PN
j¼1 logF

j
i

N

 !
; ðB4Þ

where N is the number of data. Equation (B3) is solved by
least squares, and the resulting model prediction, ebi, is
compared with the scaled data bi to obtain one more scaling
factor:

b ¼ exp
XN
j¼1

log
biebi
,

N

 !
: ðB5Þ

Our ‘best fit’ scaling constants are then obtained as:

Ai ¼
b
ai

Ci; ðB6Þ

or with perturbations within the a priori bounds as:

Ai ¼
b
ai

Ci exp mið Þ; ðB7Þ

where mi is a random number drawn from the interval [mi
L,

mi
U].
[78] The randomization of the scaling constants after the

above data fit is a key to an efficient MCMC simulation,
and data fitting itself must also be done efficiently. If
different creep mechanisms considered in a composite flow
law do not occur independently, the flow law would not be
linear in relevant scaling constants. In this case, randomiz-
ing the scaling constants may become more involved than
considered here.
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