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S U M M A R Y
On the basis of numerical modelling and scaling analysis, a few modifications are proposed
for the scaling of stagnant-lid convection, in order to make it more applicable to the thermal
evolution of terrestrial planets. The effect of using Arrhenius rheology, as opposed to more
popular linear-exponential rheology, is first investigated, and the stability analysis of top
thermal boundary layer is shown to be able to capture systematic differences caused by the
different kinds of temperature-dependent viscosity. The local stability analysis is then extended
to handle the effects of mantle melting such as dehydration stiffening and compositional
buoyancy. A new heat-flow scaling law incorporating these effects suggests that mantle melting
may reduce the conventional prediction of surface heat flux by up to a factor of ∼5–10, and
its potential impact on our understanding of planetary evolution is briefly discussed.

Key words: Dynamics of lithosphere and mantle; Heat generation and transport; Rheology:
mantle; Planetary interiors.

1 I N T RO D U C T I O N

Thermal convection with temperature-dependent viscosity is known
to exhibit the stagnant-lid regime (i.e. the top boundary is essen-
tially immobile) when the temperature dependency is sufficiently
high (e.g. Morris & Canright 1984; Ogawa et al. 1991; Solomatov
1995). Because the viscosity of silicate rocks is strongly
temperature-dependent with the activation energy of a few hun-
dred kJ mol−1 (Karato & Wu 1993), and because terrestrial planets
other than Earth do not show clear evidence for the operation of
plate tectonics (Schubert et al. 2001), the scaling of stagnant-lid
convection has commonly been used when modelling the thermal
evolution of these planets (e.g. Solomatov & Moresi 1996; Grasset
& Parmentier 1998; Reese et al. 1999; Hauck & Phillips 2002).

The cooling history of a planetary mantle controls its chem-
ical evolution via melting, and the chemical evolution could in
turn affect the cooling history; melting extracts heat-producing ele-
ments from the mantle (Spohn 1991) and results in compositionally
buoyant lithosphere (Parmentier & Hess 1992). Mantle melting
also dehydrates and stiffens the shallow part of the mantle (Hirth
& Kohlstedt 1996). With purely temperature-dependent viscosity,
higher mantle temperature implies a thinner lid and thus higher sur-
face heat flux. Hotter mantle, however, starts to melt deeper and
creates a thicker dehydrated (and presumably stiff) boundary layer
(Korenaga 2003), which may result in a substantial reduction in
surface heat flux. Melting-induced viscosity stratification thus has a
potential to reshape the scaling of stagnant-lid convection. If there
were no water in the mantle, melting would of course produce no
viscous stratification (and convection would be sluggish throughout
the mantle because of high viscosity expected for a completely dry
mantle). Though the amount of water within the planetary mantle

is generally poorly constrained (e.g. Johnson et al. 1991; Mysen
et al. 1998), likely scenarios for planetary accretion suggest that the
planetary mantle could have initially been moderately wet as Earth’s
oceanic upper mantle (i.e. a few hundred ppm H/Si) (e.g. Wänke &
Dreibus 1994; Lunine et al. 2003), so it would be desirable to take
into account the effect of dehydration when modelling planetary
evolution.

Recently, van Thienen (2007) has studied the scaling of thermal
convection with dehydration stiffening as well as compositional
buoyancy, but his study is limited mostly to weakly temperature-
dependent viscosity with the maximum viscosity contrast of 100
(equivalent to the activation energy of ∼12 kJ mol−1). It is difficult
to extract scaling laws relevant to planetary evolution from such
modelling results. In this study, therefore, I will focus on convec-
tion with strongly temperature-dependent viscosity. By combining
simple numerical modelling with scaling analysis, it will be shown
that the heat-flow scaling of stagnant-lid convection may be accu-
rately derived from the stability of the top boundary layer alone,
even when realistic complications, such as Arrhenius rheology and
dehydration stiffening, are incorporated. This simple result is im-
portant to build a versatile method of predicting surface heat loss
from a chemically differentiating planet.

This paper is organized as follows. First, the effect of using Arrhe-
nius rheology, instead of more popular linear-exponential rheology,
on the scaling of stagnant-lid convection will be discussed in some
detail. These two types of rheology result in slightly different scaling
laws, and a scaling analysis based on boundary layer stability will
be introduced to explain the observed difference. Then, the effect
of dehydration stiffening will be investigated by introducing depth-
dependent viscosity to stagnant-lid convection. The earlier scaling
analysis will be shown to be capable of handling this effect as well,
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Scaling of depleted stagnant lid 155

and based on this success, a more general boundary-layer approach
will be developed to take into account the effect of compositional
buoyancy. Finally, heat-flow scaling for terrestrial planets will be
suggested, along with its implications and limitations.

2 L I N E A R - E X P O N E N T I A L V E R S U S
A R R H E N I U S R H E O L O G Y

The viscosity of a planetary mantle may be expressed as follows:

η = b

τ n−1
exp

(
E + pV

RT

)
, (1)

where b is a pre-exponential factor, τ is the second invariant of
stress, n is the stress exponent, E is the activation energy, p is pres-
sure, V is the activation volume, R is the universal gas constant and
T is absolute temperature. The stress exponent is one for diffusion
creep, and is typically ∼3–5 for dislocation creep. Different defor-
mation mechanisms have different activation energies and volumes
as well. Whereas multiple deformation mechanisms can take place
in parallel (known as composite rheology), eq. (1) assumes only one
mechanism, so it should be regarded as the simplest form of mantle
rheology. As will be shown, our understanding has not been estab-
lished even in this case; more realistic cases of composite rheology
are left for future studies.

Eq. (1) may be non-dimensionalized as

η∗ = (τ ∗)1−n exp

(
E∗

T ∗ + T ∗
off

− E∗

1 + T ∗
off

)
, (2)

where asterisks denote non-dimensionalized quantities. Here tem-
perature is normalized as

T ∗ = T − Ts

�T
, (3)

where T s is the surface temperature and �T is the tempera-
ture contrast across the mantle. The parameter T ∗

off is the surface
temperature normalized by the temperature contrast, T s/�T and
E∗ = E/(R�T ). For simplicity, the activation volume is neglected
hereinafter.

In the numerical studies of mantle convection, the Arrhenius
rheology has often been approximated by the following linear-
exponential viscosity:

η∗ = (τ ∗)1−n exp[θ (1 − T ∗)], (4)

where θ is the Frank–Kamenetskii parameter defined as

θ = E�T

R(Ts + �T )2
= E∗

(1 + T ∗
off )

2
. (5)

At T ∗ = 1, the linear-exponential viscosity defined this way has the
same temperature dependency as the original Arrhenius form, but
they diverge quickly as T ∗ → 0 (Fig. 1). There are a few reasons
why the the linear-exponential approximation is popular. First, it
is numerically more tractable because of smaller viscosity contrast
and more amenable to theoretical analyses because of its simpler
functionality. Second, it has only one parameter to vary (i.e. θ )
whereas the Arrhenius rheology has three (E , T s and �T ) (Fig. 1).
Even with the use of a realistic activation energy, therefore, one
can still achieve an unrealistically small viscosity contrast by con-
trolling other two parameters (e.g. Tackley 2000). Such ambiguity
is absent for linear-exponential viscosity. Finally, it is a particu-
larly good approximation for stagnant-lid convection because only
a bottom fraction of the top boundary layer with T ∗ ∼ 1 (called
the rheological sublayer) participates in convection. The scaling

Figure 1. Comparison of linear-exponential rheology (eq. 4) and Arrhenius
rheology (eq. 2). All examples shown have the same Frank–Kamenetskii
parameter θ of 20. The relation between θ and activation energy E is not
unique because the Frank–Kamenetskii parameter depends also on surface
temperature T s and temperature contrast �T (eq. 5).

laws of stagnant-lid convection have commonly been derived with
the Frank–Kamenetskii parameter (e.g. Davaille & Jaupart 1993;
Grasset & Parmentier 1998; Solomatov & Moresi 2000). Never-
theless, it is the Arrhenius rheology that describes the temperature
dependency of mantle viscosity because thermally activated pro-
cesses take the Arrhenius form, and it is desirable to know how
good the linear-exponential approximation would be. Reese et al.
(1999) conducted a direct comparison of these two viscosity laws
and concluded that the efficiency of heat transport is about 20 per
cent lower for the Arrhenius rheology, but their analysis is based on
numerical results with only one set of model parameters. A more
systematic attempt is reported in this section. Because only a small
temperature contrast is involved in stagnant-lid convection, the dif-
ference between the two types of rheology is expected to be small.
My intention to scrutinize this issue is to derive the systematics
of such subtle difference, which can serve as a testing ground for
developing an accurate scaling theory. The strategy of numerical
modelling follows closely that of Solomatov & Moresi (2000), but
to set up notations for subsequent discussion, theoretical formula-
tion will be given in a self-contained manner.

2.1 Theoretical formulation

The non-dimensionalized governing equations for thermal convec-
tion of an incompressible fluid with internal heat generation consist
of the conservation of mass,

∇ · u∗ = 0, (6)

the conservation of momentum,

−∇ P∗ + ∇ · [η∗(∇u∗ + ∇u∗T )] + RaT ∗ez = 0, (7)

and the conservation of energy,

∂T ∗

∂t∗ + u∗ · ∇T ∗ = ∇2T ∗ + H ∗. (8)
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The unit vector pointing upward is denoted by ez . The spatial co-
ordinates are normalized by the depth of a fluid layer, D, and time
is normalized by the diffusion timescale, D2/κ , where κ is thermal
diffusivity. Velocity u∗ is thus normalized by κ/D. Temperature is
normalized by the temperature scale �T , and viscosity is by a refer-
ence viscosity η0. The definitions of �T and η0 are different for the
exponential and Arrhenius cases, and they will be explained in more
detail. Dynamic pressure P∗ and heat generation H∗ are normalized
by η0κ/D and ρ0 D2/(k�T ), respectively, where ρ0 is reference
density and k is thermal conductivity. The Rayleigh number Ra is
defined as

Ra = αρ0g�T D3

κη0
, (9)

where α is thermal expansivity and g is gravitational acceleration.
Following Solomatov & Moresi (2000), purely internal heating

is adopted; that is, the bottom boundary is insulated. There will be
no thermal boundary layer at the bottom, simplifying the scaling
analysis of numerical results. At the same time, however, the in-
ternal temperature (the temperature of convecting mantle beneath
the stagnant lid) is not known a priori. For convection with internal
heating, therefore, it is common to extract the temperature scale
from heat generation as

�TH = ρ0 H D2

k
, (10)

and use viscosity at the surface temperature as the reference viscos-
ity. With this temperature scale, the non-dimensional heat genera-
tion H∗ in eq. (8) becomes unity. The following (dimensional) form
of exponential viscosity is used:

η = b

τ n−1
exp(−γ T ), (11)

which may be non-dimensionalized as

η∗ = (τ ∗)1−n exp(−θH T ∗), (12)

where θH is γ�T H and the reference viscosity is given by

η0 = b1/n

(
D2

κ

)(n−1)/n

. (13)

Using eqs (10) and (13), the Rayleigh number may be expressed as

RaH,0 = αρ2gH D(3n+2)/n

kb1/nκ1/n
, (14)

which is called the surface Rayleigh number because the reference
viscosity is defined at the surface temperature. The internal temper-
ature, Ti , is usually calculated based on the horizontally averaged
temperature profile, 〈T 〉 (Fig. 2). If we use the difference between
the internal temperature and the surface temperature to redefine the
temperature scale (i.e. �T = Ti − T s), then, the viscosity may be
expressed as

η∗ = (τ ∗)1−n exp(−θT ∗), (15)

where

θ = �T

�TH
θH . (16)

Eq. (15) is the same as eq. (4) except for the factor eθ . Using this
new temperature scale and viscosity at the internal temperature, the
internal Rayleigh number is defined as

Rai = αρg�T D(n+2)/n

b1/nκ1/n exp(−γ Ti/n)
. (17)

Figure 2. Schematic illustration of the relation among horizontally aver-
aged temperature 〈T 〉, internal temperature Ti and the thickness of thermal
boundary layer δ, for internally heated convection. Temperature variations
with depth are exaggerated.

Because of purely internal heating, the surface heat flux q is equal
to total heat generation in the fluid divided by surface area,

q = ρ0 DH, (18)

and the corresponding Nusselt number is given by

Nu = q

k�T/D
= �TH

�T
. (19)

The internal temperature is thus fundamental to calculating the
internal Rayleigh number and the Nusselt number. Because the
horizontally average temperature usually exhibits small fluctuations
with depth (Fig. 2), however, how to define Ti is not very unique.
It is not described by Solomatov & Moresi (2000). One may define
the base of the stagnant lid based on the velocity profile and take the
average of temperature below the lid. Here, I choose to rely solely
on temperature and define Ti in a self-consistent manner as

Ti − Ts = 1

1 − δ

∫ 1−δ

0
〈T 〉dz∗, (20)

where δ = Nu−1 = (Ti − T s)/�T H . The non-dimensionalized
thickness of the top thermal boundary layer is the reciprocal of
the Nusselt number, and the internal temperature is defined as the
average of temperature below the boundary layer. For a given tem-
perature profile 〈T 〉, the above equation is solved numerically for
Ti .

For the Arrhenius rheology, eq. (1) is used. Its non-dimensional
form (eq. 2) assumes that the reference viscosity is defined at the
internal temperature and also that temperature is normalized by
�T (= Ti − T s). So Ra in eq. (7) corresponds to the internal
Rayleigh number defined as

Rai = αρg�T D(n+2)/n

b1/nκ1/n exp[E/(n RTi )]
. (21)

Heat generation H∗ in eq. (8) must be chosen properly so that the
normalized internal temperature T ∗

i is unity, and it may be obtained
as follows. Each model run with the exponential viscosity is associ-
ated with the Frank–Kamenetskii parameter θ (eq. 16), Rai (eq. 17)
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and Nu (eq. 19). The activation energy E for a corresponding Arrhe-
nius case is calculated from θ based on eq. (5) (Here, I arbitrarily use
T s = 273 K and �T = 1500 K.), and if the linear-exponential ap-
proximation were exact, running such Arrhenius case with Ra = Rai

and H ∗ = Nu should result in T ∗
i = 1. In reality, T ∗

i slightly deviates
from unity, so the following a posteriori rescaling is necessary:

�T = �Torig T ∗
i , (22)

Nu = Nuorig/T ∗
i , (23)

Rai = Rai,orig T ∗
i exp

(
E∗

1 + T ∗
off

− E∗

T ∗
i + T ∗

off

)1/n

, (24)

T ∗ = T ∗
orig/T ∗

i . (25)

2.2 Numerical results

The finite element code of Korenaga & Jordan (2003) was used
to solve the coupled Stokes flow and thermal advection-diffusion
eqs (6)–(8). To avoid wall effects, the aspect ratio of the convection
model is set to 4, and the model domain is discretized with 128 × 32
uniform 2-D quadrilateral elements. The non-dimensional surface

Table 1. Numerical results for cases with purely temperature-dependent viscosity.

Linear exponential Arrheniusb

n θH RaH,0 Nua v∗,a
rms Ec �T θ Rai Nu v∗

rms

1 40 10 3.09 (3.03 ) 71 (76 ) 230 1531 13.0 2.41 × 106 2.94 81
1 50 1 3.11 (3.06 ) 94 (103 ) 280 1522 15.9 5.13 × 106 2.96 111
1 50 3 3.28 (3.25 ) 119 (119 ) 270 1546 15.2 7.18 × 106 3.20 144
1 50 10 3.52 (3.50 ) 137 (137 ) 250 1549 14.0 7.52 × 106 3.39 160
1 50 30 3.78 (3.75 ) 150 (147 ) 230 1528 13.0 6.38 × 106 3.44 153
1 50 100 4.12 (4.09 ) 171 (167 ) 210 1561 11.7 8.36 × 106 3.84 199
1 60 0.1 3.13 (3.10 ) 135 (138 ) 340 1531 19.2 1.24 × 107 3.04 166
1 60 0.3 3.29 (3.27 ) 157 (151 ) 320 1537 18.1 1.36 × 107 3.22 187
1 60 1 3.50 (3.48 ) 173 (172 ) 300 1544 16.9 1.49 × 107 3.40 212
1 60 3 3.70 (3.69 ) 193 (187 ) 280 1546 15.7 1.57 × 107 3.59 235
1 60 10 3.98 (3.97 ) 213 (201 ) 260 1561 14.5 1.72 × 107 3.84 265
1 60 30 4.28 (4.24 ) 226 (223 ) 250 1564 13.9 1.89 × 107 4.03 292
2 50 10 2.78 (2.75 ) 47 (47 ) 317 1537 17.9 4.14 × 104 2.63 50
2 50 30 3.10 (3.06 ) 60 (61 ) 285 1556 15.9 4.81 × 104 2.95 71
2 50 100 3.56 (3.50 ) 80 (80 ) 249 1574 13.8 5.31 × 104 3.34 97
2 60 3 2.80 (2.78 ) 61 (62 ) 376 1525 21.3 6.35 × 104 2.66 62
2 60 10 3.10 (3.07 ) 80 (80 ) 341 1543 19.2 7.73 × 104 2.98 94
2 60 30 3.45 (3.41 ) 101 (99 ) 307 1558 17.2 8.42 × 104 3.28 121
2 70 1 2.86 (2.83 ) 81 (81 ) 431 1528 24.4 1.06 × 105 2.78 94
2 70 3 3.09 (3.07 ) 103 (102 ) 397 1536 22.4 1.17 × 105 3.00 120
2 70 10 3.41 (3.38 ) 129 (127 ) 361 1545 20.3 1.29 × 105 3.28 155
2 70 30 3.77 (3.73 ) 155 (152 ) 327 1556 18.3 1.39 × 105 3.60 190
3 60 30 2.95 (2.88 ) 56 (56 ) 360 1552 20.2 1.31 × 104 2.80 62
3 70 3 2.52 (2.50 ) 43 (43 ) 490 1524 27.8 1.65 × 104 2.46 46
3 70 10 2.85 (2.80 ) 63 (65 ) 430 1530 24.3 1.80 × 104 2.74 72
3 70 30 3.23 (3.15 ) 85 (86 ) 390 1545 21.9 2.05 × 104 3.11 106
3 70 100 3.78 (3.68 ) 113 (112 ) 330 1564 18.4 2.03 × 104 3.55 136
3 80 1 2.51 (2.49 ) 49 (51 ) 560 1525 31.8 2.19 × 104 2.46 55
3 80 3 2.75 (2.71 ) 70 (72 ) 510 1522 29.0 2.34 × 104 2.66 76
3 80 10 3.09 (3.04 ) 95 (98 ) 460 1530 26.0 2.54 × 104 2.94 106
3 80 30 3.49 (3.42 ) 123 (122 ) 400 1540 22.5 2.63 × 104 3.31 140
3 80 100 4.06 (3.95 ) 154 (154 ) 350 1548 19.6 2.80 × 104 3.78 186

aNumbers in parentheses are from Solomatov & Moresi (2000) for comparison.
bT s is 273 K for all cases.
cUnit is kJ mol−1.

temperature is fixed to zero, and the bottom boundary is insulated.
The top and bottom boundaries are free-slip, and a reflecting bound-
ary condition is applied to the side boundaries. A total of 32 runs
were conducted with the linear-exponential viscosity, with the same
combinations of n, θH and RaH,0 used by Solomatov & Moresi
(2000) (Table 1). Numerical results reported here thus serve as a
benchmark test of the code of Korenaga & Jordan (2003) in terms
of finite-amplitude convection with non-linear viscosity. Each run
was started with an initial temperature field of the following form:

T ∗(x∗, z∗) = c + a cos(πx∗) sin(π z∗), (26)

where the constants c and a were set to 0.2 and 0.05, respectively,
in most cases, and was integrated until t∗ = 3. The influence of the
initial condition disappeared for t∗ > ∼0.5–1, and model statistics
was taken using the interval of t∗ = 1 − 3.

Compared to Solomatov & Moresi (2000), Nu is systematically
higher by ∼0.5–2 per cent (Table 1), suggesting that the self-
consistent definition of Ti (eq. 20) results in slightly lower values
than what Solomatov & Moresi (2000) obtained. The root-mean-
square (rms) velocity for the entire model domain, vrms, is not af-
fected by such difference in the definition of Ti and indeed exhibits
no systematic difference. On average, the velocity measurement is
different from that of Solomatov & Moresi (2000) by ∼2 per cent
(Table 1), which is comparable to 2–3 per cent error estimated by
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158 J. Korenaga

Figure 3. Measured logarithmic viscosity contrast within the convecting
region beneath the stagnant lid, arh, for linear-exponential (solid symbols)
and Arrhenius (open) cases reported in Table 1. Error bars denote one
standard deviation and are mostly due to fluctuations in temperature at the
lid base.

them. The base of the stagnant lid is defined using a tangent at the
inflection point z∗

i of the velocity profile as

z∗
L = z∗

i − v∗
rms(z

∗
i )

(v∗
rms)

′(z∗
i )

, (27)

where the prime denotes spatial differentiation. Then, the lid thick-
ness d∗

L is given by 1 − z∗
L . The logarithmic viscosity contrast within

the convecting region beneath the lid is calculated as

arh = log
η[〈T 〉(z∗

L )]

η(Ti )
= θH [T ∗

i − 〈T ∗〉(z∗
L )], (28)

where temperature is normalized by �T H . The viscosity contrast is
nearly constant for the same stress exponent, and arh is ∼2.5 (n =
1), ∼3.0 (n = 2) and ∼4.0 (n = 3) (Fig. 3). These values are smaller
than reported by Solomatov & Moresi (2000), probably because of
different definitions for Ti . Temperature at the lid base is more time-
dependent than the internal temperature, resulting in relatively large
uncertainty for arh (Fig. 3). The lid thickness d∗

L , which is based
on the velocity profile, is similar to the thickness of the thermal
boundary layer δ, and the former may be better suited to measure
kinematic observables such as the internal viscosity contrast.

For each exponential-viscosity case, a corresponding Arrhenius-
viscosity model was run as described in Section 2.1, and results
are summarized in Table 1. The logarithmic viscosity contrast arh

is slightly smaller than the exponential case: ∼2.3 (n = 1), ∼2.9
(n = 2) and ∼3.7 (n = 3) (Fig. 3), which is expected from the
superexponential behaviour of the Arrhenius rheology (Fig. 1).

2.3 Scaling analysis

Heat-flow scaling for internally heated stagnant-lid convection may
be expressed as (e.g. Reese et al. 1999; Solomatov & Moresi 2000)

Nu[1 − 2Nu−1(1 − arhθ
−1)]1−β(n+2)/(2n) = aθ−1−β Raβ

i , (29)

where β = n/(n + 2). In the limit of Nu 
 1, it approaches the
following asymptotic formula:

Nu ≈ aθ−1−β Raβ

i . (30)

Solomatov & Moresi (2000) fit eq. (29) to their numerical results
and obtained a ≈ 0.31 + 0.22n by assuming arh = 1.2(n + 1). As
my definition of Ti (eq. 20) results in slightly different values of Nu,
Rai and arh, I repeated their regression analysis and obtained that a
≈ 0.30 + 0.25n. The rms error of the fit is ∼1.2 per cent (Fig. 4a).

Similarly, velocity scaling has often been assumed as

v∗
rms = av[1 − 2Nu−1(1 − arhθ

−1)]b

(
Rai

θ

)βv

, (31)

where

b = βv(n + 2)

2n
(32)

and

βv = n(2n + 1)

(n + 1)(n + 2)
. (33)

The asymptotic form is as follows:

v∗
rms ≈ av

(
Rai

θ

)βv

. (34)

The expression for the exponent b is, however, inconsistent with
the rms operation assumed for v∗

rms. The correct expression is the
following:

b = βv(n + 2)

2n
− 1

4
. (35)

With this correction, I fit eq. (31) to numerical data and obtained
av ≈ 0.05 + 0.29/n. The rms error is ∼4.4 per cent (Fig. 4b). The
difference from the previous result, 0.04 + 0.34/n, is trivial, but
the correct form of b turns out to be important when comparing the
exponential and Arrhenius runs.

The purpose of the Arrhenius runs is to derive minimum possible
corrections to eqs (29) and (31). To this end, these equations were
solved for the effective Frank–Kamenetskii parameter θeff using Nu
and Rai from the Arrhenius runs. That is, the parameters arh, a and
av take the aforementioned values determined by the exponential-
viscosity data. The correction factor θeff/θ is plotted in Fig. 4(c)
(based on eq. 29) and Fig. 4(d) (based on eq. 31). It was found
that eq. (35) is essential to obtain similar correction factors for both
heat-flow scaling and velocity scaling. If eq. (32) is used instead,
the correction factor for velocity scaling would be very different
from that for heat-flow scaling. The factor is generally in the range
of ∼1.15–1.35, encompassing the value of 1.2 suggested by Reese
et al. (1999).

The correction factor may be justified as follows. From eq. (28),
a temperature contrast in the convecting region beneath the lid can
be related to arh as

�T ∗
e = aL

rh

θ
(36)

for the linear-exponential viscosity as signified by the superscript L.
Here temperature is normalized by �T . One may derive a similar
expression for the Arrhenius viscosity as

�T ∗
e = a A

rh

θ + a A
rh/(1 + T ∗

off )
, (37)

C© 2009 The Author, GJI, 179, 154–170

Journal compilation C© 2009 RAS



Scaling of depleted stagnant lid 159

Figure 4. (a) The results of fitting the heat-flow scaling of eq. (29) to the Nusselt number observed for the linear-exponential runs reported in Table 1. Fitting
was done separately for a subgroup of runs with the same n, and the fitted values of a are 0.57 (n = 1), 0.79 (n = 2) and 1.05 (n = 3). (b) Same as (a) but for
the velocity scaling of eq. (31). The fitted values of av are 0.35 (n = 1), 0.18 (n = 2) and 0.16 (n = 3). (c) The correction factor θeff /θ based on fitting the
Arrhenius results to the heat-flow scaling of eq. (29). Curves are theoretical prediction based on eq. (41) with T s = 273 K and �T = 1500 K. (d) Same as (c)
but with the velocity scaling of eq. (31).

where the superscript A denotes Arrhenius. Equating the above with
aL

rh/θeff leads to

θeff

θ
= aL

rh(n)

a A
rh(n)

[
1 + a A

rh(n)

θ (1 + T ∗
off )

]
≡ c1. (38)

Alternatively, the effective Frank–Kamenetskii parameter may be
defined by a viscosity gradient at the lid base as

θeff = E∗

(1 − �T ∗
e + T ∗

off )
2
, (39)

which may be rearranged to

θeff

θ
=

[
1 + a A

rh(n)

θ (1 + T ∗
off )

]2

≡ c2. (40)

Either expression can explain measured correction factors reason-
ably well for n = 1, but c1 tends to be too low for higher n whereas
c2 too high. Thus, their geometric mean is adopted as an optimal
choice

θeff

θ
= (c1c2)1/2. (41)

Even with the above, only a modest fit to measured values is achieved
(Figs 4c and d), but this may be understood from large uncertainties
associated with arh (Fig. 3).

The heat-flow scaling law in the asymptotic limit (eq. 30) can
be derived from the stability analysis of the top thermal boundary
layer (e.g. Solomatov 1995). Consider a boundary layer of thickness
δ, in which normalized temperature increases linearly from 0 to 1

Figure 5. Schematic illustration of a model setup for the local stability
analysis of the thermal boundary layer.

(Fig. 5). The local Rayleigh number for the boundary layer may be
defined as

Ral (δ) = Rai max
δeff

[
δ

(n+2)/n
eff �T ∗

eff

(η∗
eff )

1/n

]
, (42)
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Figure 6. (a)–(c) Comparison of Nu prediction based on local stability analysis (symbols) with the asymptotic scaling law (curves). For linear-exponential
rheology, the scaling law of eq. (30) is used, and it is modified with the correction factor of eq. (41) for Arrhenius rheology. Three different combinations of
n and θ are considered. (d) The critical Rayleigh numbers estimated from the asymptotic heat-flow scaling are shown as symbols for n = 1–3, and the fitted
formula of eq. (44) is shown as dashed line.

where Rai is the internal Rayleigh number for the entire domain,
δeff is the thickness of a sublayer that varies from 0 to δ, �T ∗

eff is
an effective temperature contrast within the sublayer (= δeff/δ) and
η∗

eff is effective viscosity for the sublayer. A logarithmic average
is used to calculate η∗

eff . The thickness of the thermal boundary
layer in stagnant-lid convection may be considered as the maxi-
mum thickness that a boundary layer can achieve before becoming
dynamically unstable, that is,

Ral (δ) = Racrit(n), (43)

where Racrit(n) is the critical Rayleigh number as a function of the
stress exponent n. Thus, Nu (= δ−1) can be derived by combining
eqs (42) and (43) if Racrit(n) is known.

Eq. (30) with a ≈ 0.30 + 0.25n implies that the critical Rayleigh
number is ∼450 (n = 1), ∼134 (n = 2) and ∼104 (n = 3), and a
general expression is estimated as (Fig. 6d)

Racrit(n) ≈ exp(3.84 + 2.25/n). (44)

With this critical Rayleigh number, the boundary-layer stability ap-
proach reproduces exactly the asymptotic heat-flow scaling in the
case of linear-exponential viscosity (Figs 6a–c). This stability anal-
ysis can easily be extended to the Arrhenius viscosity; only η∗

eff

in eq. (42) requires modification. Using the same critical Rayleigh
number, the local stability approach also reproduces well the heat-
flow scaling for the Arrhenius viscosity, though it tends to underpre-
dict when n > 1 (Figs 6a–c). The simplicity of the stability analysis
and its capability of capturing the subtle difference between the
exponential and Arrhenius cases suggest that this approach may

be further extended to handle more involved situations, as will be
shown in the next sections.

3 E F F E C T S O F M A N T L E M E LT I N G

As mentioned in Section 1, mantle melting likely introduces viscos-
ity and compositional stratifications in the shallow mantle. The dry
solidus for an Earth-like mantle may be expressed as (Takahashi &
Kushiro 1983)

P0 = (Tp − 1150)/100, (45)

where P0 is the initial pressure of melting in GPa and T p is the
potential temperature (hypothetical temperature of mantle adiabat-
ically brought to the surface without melting) in ◦C. An upwelling
mantle with T p of 1350 ◦C, for example, starts to melt at the pres-
sure of 2 GPa. A trace amount of water if present causes mantle
melting at a slightly higher pressure, but the above dry solidus is
sufficient to provide a conservative estimate on the effects of mantle
melting. For Earth, the pressure of 2 GPa corresponds to the depth
of 60 km. This length scale is comparable with that of the thermal
boundary layer. The pressure would correspond to greater depths
for smaller planets such as Mars and Mercury. Thus, the effects
of mantle melting on planetary evolution are expected to be more
significant for smaller terrestrial planets.
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3.1 Dehydration stiffening

An increase in viscosity caused by the loss of hydrogen upon melt-
ing is on the order of 102–103 for dislocation creep (e.g. Hirth &
Kohlstedt 1996; Mei & Kohlstedt 2000b; Korenaga & Karato 2008)
and ∼10 for diffusion creep (e.g. Mei & Kohlstedt 2000a; Ko-
renaga & Karato 2008). Faul & Jackson (2007) recently suggested
that nominally dry deformation experiments may be influenced by a
trace amount of melt and that melt-free diffusion creep is two orders
of magnitude slower. If this is the case, diffusion creep would also
exhibit a factor of ∼103 increase in viscosity due to dehydration.

Because hydrogen is highly incompatible with the solid phase
(e.g. Koga et al. 2003), the residual solid component of an upwelling
mantle would be almost completely dehydrated as soon as it starts to
melt (Hirth & Kohlstedt 1996). Dehydration stiffening thus results in
step-function-like viscosity stratification; that is, viscosity increases
by a few orders of magnitude within a narrow depth interval. The
presence of partial melt can somewhat compensate this viscosity
increase, but its porosity is expected to be low because melt is more
buoyant than the coexisting solid at shallow upper mantle conditions
and starts to form an interconnected network at a very low porosity
(<1 per cent) (Kohlstedt 1992). The influence of partial melt on
dehydration stiffening is thus expected to be minor (e.g. Braun
et al. 2000). The melt phase will eventually drain away because of
its positive buoyancy unless it is continuously supplied from below;
such situation would be possible only when the mantle is somehow
heating up (instead of cooling down) during planetary evolution.

Whereas several authors have investigated stagnant-lid convec-
tion with depth-dependent viscosity caused by non-zero activation
volume (eq. 1) (e.g. Doin et al. 1997; Dumoulin et al. 1999), step-
function-like depth dependency has so far received little attention.
A sudden viscosity increase by mantle melting cannot be approx-
imated well by the use of activation volume, which results in a
gradual viscosity increase over the entire model depth. Here the
linear-exponential viscosity of eq. (15) is modified as

η∗ = (τ ∗)1−n Z (z∗) exp(−θT ∗), (46)

where

Z (z∗) =
{

1 for z∗ ≤ z∗
D

�η for z∗ > z∗
D

(47)

and z∗
D marks the base of dehydrated mantle. This depth dependency

is time-independent. Alternatively, one could mark the dehydrated
part of the mantle and trace its advection through time. Though this
would be dynamically more self-consistent, tracing chemistry is
time-consuming and makes the problem setup less clean. Even with
the time-independent viscosity stratification, modelling would be
self-consistent if convection is restricted to z∗ < z∗

D , and as shown
later, self consistency can easily be achieved at the stage of scaling
analysis.

Numerical modelling similar to that reported in Section 2.2 was
conducted with the viscosity of eq. (46). The initial and boundary
conditions as well as the aspect ratio are the same as before, but
the model domain is discretized by 192 × 48 uniform elements
to handle runs with higher Rayleigh numbers. Each run was again
integrated to t∗ = 3, and results for t∗ > 1 were averaged to yield
model statistics. One Newtonian (n = 1) and one non-Newtonian
(n = 3) models are considered, and for both models, z∗

D is set to
0.75. Three different viscosity contrasts (1, 3 and 10) are used, and
the runs with �η = 1 are used as a reference. For purely internal
heating, the internal temperature (and thus θ ) cannot be known a
priori, so it is difficult to collect model results with some fixed value

Table 2. Numerical results for cases with temperature- and depth-dependent
viscosity (n = 1 and θH = 50).

RaH,0 �ηa θ Rai d∗
L Nu v∗

rms

1 1 16.05 2.99 × 106 0.32 3.12 95
3 1 15.11 3.31 × 106 0.30 3.31 109
10 1 14.12 3.84 × 106 0.27 3.54 130
30 1 13.18 4.19 × 106 0.25 3.79 148
100 1 12.11 4.41 × 106 0.22 4.13 167
300 1 11.11 4.45 × 106 0.20 4.50 182

1000 1 10.02 4.50 × 106 0.17 4.99 202
3000 1 9.03 4.51 × 106 0.15 5.54 221
10000 1 7.93 4.40 × 106 0.12 6.31 242
30000 1 6.93 4.23 × 106 0.10 7.22 262

1 3 16.16 3.38 × 106 0.33 3.09 101
3 3 15.29 3.99 × 106 0.31 3.27 117
10 3 14.36 4.97 × 106 0.28 3.48 140
30 3 13.60 6.61 × 106 0.27 3.68 170
100 3 12.85 9.75 × 106 0.25 3.89 214
300 3 12.10 1.31 × 107 0.24 4.13 256

1000 3 10.98 1.28 × 107 0.22 4.56 278
3000 3 10.03 1.37 × 107 0.20 4.98 308
10000 3 8.95 1.39 × 107 0.19 5.58 331
30000 3 7.96 1.37 × 107 0.13 6.28 355

1 10 16.14 3.31 × 106 0.33 3.10 98
3 10 15.31 4.11 × 106 0.31 3.26 118
10 10 14.44 5.38 × 106 0.29 3.46 143
30 10 13.74 7.65 × 106 0.27 3.64 177
100 10 13.10 1.28 × 107 0.26 3.82 235
300 10 12.59 2.21 × 107 0.25 3.97 308

1000 10 12.05 4.12 × 107 0.25 4.15 409
3000 10 11.12 4.52 × 107 0.24 4.50 445
10000 10 10.06 4.69 × 107 0.23 4.97 489
30000 10 8.99 4.34 × 107 0.22 5.56 499

aViscosity contrast for z∗ > 0.75 (�η of 1 denotes no depth-dependency).

of θ ; to do so, modelling must be run iteratively. Instead, a series
of model runs were conducted with a fixed θH and a range of RaH,0

(Tables 2 and 3). Though θ varies for different values of RaH,0, it
is straightforward to extract the effect of depth-dependent viscosity
from any model run because a corresponding reference case without
depth-dependent viscosity can be predicted by the scaling law of
eq. (29) with reasonable accuracy.

Some snapshots from the Newtonian model are shown in Fig. 7.
As RaH,0 increases, the thermal boundary layer becomes thinner,
and Nu increases. An increase in RaH,0 does not always lead to
an increase in Rai (e.g. Fig. 8a), because higher RaH,0 tends to be
compensated by lower internal temperature thus higher viscosity.
Thus, the observed increase in Nu is mostly due to a decrease
in θ . The effect of depth-dependent viscosity may not be easily
recognized in Fig. 7, but for example, the cases of RaH,0 = 100
and 1000 with �η = 10 indicate that the gradual thinning of the
boundary layer is prevented by the increased viscosity for z∗ >

0.75. It is also seen that the viscosity contrast of 10 is too small to
maintain the integrity of the dehydrated lid for higher RaH,0.

Model results can be interpreted more clearly by comparing
with reference states. For each model run, the following two refer-
ences may be defined. Both references assume purely temperature-
dependent, exponential viscosity and share the same θ as the model
run under consideration. One has the same Rai (i.e. the same in-
terior viscosity) as well, but the other has it reduced by a factor
of �η. That is, the first reference (denoted by the superscript +)
corresponds to a case without dehydration stiffening, and the sec-
ond (denoted by the superscript −) to a case in which the mantle
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Table 3. Numerical results for cases with temperature- and depth-dependent
viscosity (n = 3 and θH = 80).

RaH,0 �ηa θ Rai d∗
L Nu v∗

rms

3 1 28.98 1.71 × 104 0.39 2.76 71
6 1 27.15 1.74 × 104 0.35 2.95 86

10 1 25.78 1.74 × 104 0.33 3.10 97
20 1 23.91 1.73 × 104 0.30 3.35 113
30 1 22.85 1.74 × 104 0.28 3.50 123
60 1 20.97 1.71 × 104 0.25 3.81 140
100 1 19.58 1.67 × 104 0.22 4.09 154
200 1 17.68 1.60 × 104 0.20 4.52 173
300 1 16.58 1.56 × 104 0.18 4.82 185
600 1 14.68 1.47 × 104 0.15 5.45 206
1000 1 13.28 1.39 × 104 0.13 6.03 223

3 3 28.97 1.70 × 104 0.39 2.76 70
6 3 27.16 1.74 × 104 0.35 2.95 85

10 3 25.82 1.76 × 104 0.33 3.10 97
20 3 24.07 1.84 × 104 0.30 3.32 116
30 3 23.12 1.93 × 104 0.28 3.46 129
60 3 21.63 2.19 × 104 0.26 3.70 157
100 3 20.65 2.52 × 104 0.25 3.87 185
200 3 19.30 3.01 × 104 0.23 4.14 226
300 3 18.14 2.87 × 104 0.22 4.41 240
600 3 15.95 2.43 × 104 0.19 5.02 254
1000 3 14.45 2.23 × 104 0.16 5.54 265

3 10 28.96 1.69 × 104 0.39 2.76 71
6 10 27.17 1.75 × 104 0.35 2.94 86

10 10 25.86 1.79 × 104 0.33 3.09 98
20 10 24.12 1.87 × 104 0.30 3.32 117
30 10 23.20 1.99 × 104 0.29 3.45 130
60 10 21.82 2.36 × 104 0.27 3.67 163
100 10 21.00 2.88 × 104 0.26 3.81 196
200 10 20.10 4.08 × 104 0.25 3.98 262
300 10 19.62 5.10 × 104 0.24 4.08 310
600 10 17.62 4.70 × 104 0.23 4.54 339
1000 10 15.78 3.79 × 104 0.21 5.07 337

aViscosity contrast for z∗ > 0.75 (�η of 1 denotes no depth-dependency).

is entirely dry. Surface heat flux and convective velocity should be
bounded by these two references, that is, Nu− ≤ Nu ≤ Nu+ and
v

∗,−
i ≤ v∗

i ≤ v
∗,+
i , where v∗

i denotes rms velocity beneath the lid
and may be calculated as v∗

rms/
√

1 − Nu−1. This is approximately
the case in Figs 8 and 9; the violation of these bounds observed in
Fig. 9(a) is due to the finite accuracy of the heat-flow scaling law.
Important observations are (1) that the presence of a dehydrated lid
reduces surface heat flux even when the dehydrated lid is thinner
than the (purely temperature-dependent) stagnant lid, that is, Nu <

Nu+ even when Nu+ < 1/z∗
D ; (2) that the dehydrated lid is eventu-

ally destabilized when the internal Rayleigh number is so high that
even the entirely dry mantle yields a thinner stagnant lid, that is,
Nu ≈ Nu− when Nu− > 1/z∗

D ; and (3) that the velocity scaling for
the first reference may provide a reasonable approximation as long
as the dehydrated lid is stable, that is, v∗

i ≈ v
∗,+
i when Nu < 1/z∗

D .
The first two observations regarding heat-flow scaling can be

reproduced well by the boundary-layer stability analysis (Fig. 10);
the depth-dependent viscosity of eq. (46) is used when calculating
η∗

eff in eq. (42). We may symbolically express this boundary-layer-
based prediction as

Nu = FNu(n, θ, Rai , �η, z∗
D), (48)

and when the dehydrated layer becomes dynamically unstable, that
is, Nu > 1/z∗

D , we can modify the depth-dependent viscosity to be

self-consistent and solve the following equation recursively:

Nu = FNu(n, θ, Rai , �η, Nu−1), (49)

until Nu converges. The convergence is usually achieved within a
few iterations. For the examples shown in Fig. 10, the use of the
recursive formula resulted in trivial differences (<0.1 per cent),
suggesting that the time-independent depth dependency does not
pose a major problem as far as heat-flow scaling is concerned.

3.2 Compositional buoyancy

Residual mantle after melt extraction is less dense than unmelted
mantle, and for an Earth-like mantle, this compositional effect may
be expressed as (Korenaga 2006)(

dρ

dF

)
≈ −1.2 kg m−3/per cent, (50)

where F is the degree of melting. The mean degree of melting may
be defined as

F̄ = 0.5(P0 − Pf )

(
dF

dP

)
S

, (51)

where P f is the final pressure of melting and (dF/dP)S is a change
in melt fraction with a change in pressure above the solidus during
adiabatic decompression. Combined with the solidus of eq. (45), the
mean degree of melting can be estimated as a function of potential
temperature (Fig. 11). Density stratification introduced by mantle
melting is then given by

ρ∗(z∗) =
{

1 for z∗ ≤ z∗
D

�ρ for z∗ > z∗
D,

(52)

where

�ρ = 1 + F̄

ρ0

(
dρ

dF

)
. (53)

This is a rough approximation because the degree of melting is
likely to be stratified within the depleted lid (i.e. shallower mantle is
more depleted and less dense), but it would be sufficient to provide
an order-of-magnitude estimate.

The significance of the density contrast �ρ (Fig. 11) may be
appreciated by calculating an equivalent temperature contrast, �T ∗

ρ ,
which is defined through

ρ∗(z∗, T ∗) = ρ∗(z∗)[1 + α�T (1 − T ∗)]

= 1 + α�T (1 − T ∗ − �T ∗
ρ ).

(54)

The factor α�T is ∼0.05, so �ρ of 0.99 corresponds to �T ∗
ρ of

∼0.2. Translating the density contrast of a compositional origin
into the equivalent temperature contrast is also meaningful from the
perspective of convective instability. The Rayleigh number (eq. 9)
is the ratio of the diffusion timescale over the advection timescale,

Ra = D2/κ

η/(αρg�T D)
, (55)

and the advection timescale is determined by the balance between
viscous resistance (∝ η) and thermal buoyancy (∝αρg�T ). Thus,
the effect of compositional buoyancy on the stability of the thermal
boundary layer (and thus heat-flow scaling) may be considered most
naturally by calculating ‘effective’ thermal buoyancy. This can be
done if �T ∗

ρ is incorporated when calculating �T ∗
eff in eq. (42).
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Figure 7. Some snapshots of the temperature field from numerical simulation reported in Table 2 (n = 1 and θH = 50). Temperature is normalized by
�T = Ti − T s. The left-hand panel shows purely temperature-dependent viscosity runs (�η = 1) for five different values of RaH,0. The right-hand panel
shows temperature- and depth-dependent viscosity runs (�η = 10 with z∗

D = 0.75).

4 A P P L I C AT I O N T O M A N T L E
C O N V E C T I O N I N T E R R E S T R I A L
P L A N E T S

To illustrate the potential impact of mantle melting on planetary
evolution, some dimensionalized examples will be presented in this
section. The boundary-layer stability criterion (eq. 43) is used to
calculate Nu, and this may be symbolically expressed as

Nu = FNu(n, E, Ts, �T, Rai , �η, �ρ, z∗
D), (56)

which signifies that the Arrhenius rheology of eq. (1) is used.
The surface heat flux can then be obtained as q = Nuk�T /D
(eq. 19). The following values are assumed for all examples:
k = 4 W m−1 K−1, α = 2 × 10−3 K−1, κ = 10−6 m2 s−2 and ρ0 =
4000 kg m−3. To calculate melting-related parameters such as P0

and �ρ, ρ0 of 3300 kg m−3 is used. The activation energy E is set
to 300 kJ mol−1 for n = 1 and 500 kJ mol−1 for n = 3, and for
both cases, the pre-exponential factor b in eq. (1) is determined so
that the surface heat flux is 50 mW m−2 at the present-day Earth
condition (D = 2900 × 103 m, g = 9.8 m s−2, T s = 273 K, and
�T = 1350 K) without the effects of mantle melting (i.e. �η =
1 and �ρ = 1). In reality, different deformation mechanisms are
expected to result in different surface heat fluxes, and even with
the same deformation mechanism, different planets may take dif-
ferent pre-exponential factors because of possible differences in,
for example, grain size and mantle composition. As mentioned
in Section 2, multiple deformation mechanisms can take place in
parallel, which further complicates this issue. The purpose of this
(arbitrary) normalization for mantle rheology is to provide a simple
reference point and highlight differences caused by mantle melt-
ing and the size of a planet. For mantle melting, the dry solidus
of eq. (45) is assumed. For an incompressible fluid (as assumed in
eqs 6–8), the internal temperature Ti is the potential temperature
T p . The viscosity contrast introduced by dehydration is set to 102,

and compositional buoyancy is calculated based on Fig. 11. As in
Section 3.1, eq. (56) is solved iteratively by setting z∗

D = Nu−1 when
Nu > 1/z∗

D , to have a self-consistent pair of the surface heat flux
and the assumed viscosity and density structure.

4.1 Earth

Though Earth does not presently exhibit stagnant-lid convection,
the rheology of the (upper) mantle and its melting behavior are
best understood for Earth, so it is convenient to use this familiar
planet first to derive a hypothetical heat-flow scaling law, against
which results for other planets may be compared. Fig. 12 shows the
case of Newtonian rheology (n = 1). For a likely range of inter-
nal temperature for thermal evolution (1200–1800 ◦C), Rai varies
from ∼109 to ∼1013 (Fig. 12a). The Nusselt number deviates con-
siderably from the conventional scaling of Ra1/3

i (eq. 30) when the
effects of mantle melting are considered (Fig. 12b). In particular, the
combination of compositional buoyancy and dehydration stiffening
reverts completely the sense of the heat-flow scaling for higher
Rai . As Fig. 12(c) indicates, the thickness of thermal boundary
layer δ decreases monotonically with increasing internal tempera-
ture in case of conventional, purely temperature-dependent scaling,
but such thinning of the boundary layer is countered by thicker de-
pleted lithosphere expected for hotter mantle. When compositional
buoyancy and dehydration stiffening are considered separately, the
latter has a far greater impact on heat-flow scaling, but when con-
sidered jointly, compositional buoyancy seems to play an important
role at higher temperatures. Mantle melting thus makes the surface
heat flux q relatively insensitive to a change in mantle temperature
(Fig. 12d), which resembles closely the scaling of Korenaga (2006)
suggested for plate-tectonic convection.

C© 2009 The Author, GJI, 179, 154–170

Journal compilation C© 2009 RAS



164 J. Korenaga

Figure 8. Effects of depth-dependent viscosity on (a) the Nusselt number and (b) interval velocity for the Newtonian rheology case reported in Table 2. Open
circles connected by solid lines denote the results of numerical modelling. Dotted lines connect the predicted lower bound (Nu− and v

∗,−
i ) whereas dot–dashed

lines connect the upper bound (Nu+ and v
∗,+
i ). The Frank–Kamenetskii parameter θ varies for different model runs and is listed along the lower limit. The

upper and lower bounds at the same θ are connected by a vertical line. The horizontal line in (a) corresponds to Nu = 1/z∗
D .

4.2 Other terrestrial planets

Three terrestrial planets, Mars, Venus, and a ‘super-Earth’ (e.g.
Valencia et al. 2007), are considered here to illustrate the effects of
planet size (Mars and super-Earth) and surface temperature (Venus).
Gravitational acceleration g and mantle depth D for these planets
are: 3.7 m s−2 and 1800 × 103 m (Mars), 9.0 m s−2 and 2941 ×
103 m (Venus) and 32.3 m s−2 and 4060 × 103 m (super-Earth),
respectively. The surface temperature is set to 773 K for Venus and
273 K for others.

The predicted surface heat flux is shown as a function of internal
temperature (Fig. 13). Compared with the same viscosity contrast
�η, the effect of dehydration stiffening is more reduced for non-
Newtonian rheology, because only the 1/nth power of the viscosity
contrast contributes to the boundary-layer stability (eq. 42). As ex-

pected, mantle melting starts to affect heat-flow scaling at lower
temperatures for Mars than Earth because the low gravity of Mars
results in the formation of thicker depleted mantle for a given po-
tential temperature. Depleted mantle may be too thick to be dynam-
ically stable at higher temperatures (Ti > ∼1600 ◦C), and even the
combination of dehydration stiffening and compositional buoyancy
cannot maintain the negative temperature sensitivity of surface heat
flux (Figs 13a and d), though higher �η would help to stabilize
the depleted lid. Despite its similar size to Earth, the scaling for
Venus is more similar to that for Mars, and this is because its high
surface temperature reduces the effective temperature dependency
of Arrhenius rheology (e.g. Fig. 1), which would result in a thin-
ner thermal boundary layer in the absence of mantle melting. It is
notable that the effects of mantle melting are important even for
a ‘super-Earth’ (Figs 13c and f). In general, when compositional
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Figure 9. Same as Fig. 8, but for the non-Newtonian rheology case reported in Table 3.

Figure 10. The effect of depth-dependent viscosity on heat-flow scaling as predicted by local stability analysis. (a) Newtonian case (n = 1) with θ = 12 and
(b) non-Newtonian case (n = 3) with θ = 25. Purely temperature-dependent reference (�η = 1) and two temperature- and depth-dependent cases (�η = 3 and
10 with z∗

D = 0.75) are shown. Dotted curves denote the theoretical lower limit Nu−. The case of �η = 1 is equivalent to the upper limit Nu+ for all cases.
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Figure 11. The mean degree of melting (solid) and the normalized density
of depleted lid (grey) are shown as a function of mantle potential tem-
perature. Melt productivity (dF/dP)S is assumed to be 15 per cent/GPa
(Korenaga 2006), and for simplicity, the final pressure of melting P f is set
to zero.

buoyancy and dehydration stiffening are considered jointly, mantle
melting could reduce the conventional prediction of surface heat
flux by up to a factor of ∼5–10.

The potential impact of the new scaling laws on the thermal evo-
lution of these planets may be better understood by converting the
surface heat flux to the mantle cooling rate as dT /d t = qS/Cm,
where S is the surface area of a planet and Cm is the heat capacity
of the mantle (Fig. 14). With mantle melting, the cooling rate would
be substantially reduced when the mantle is very hot, that is, at the
early stage of planetary evolution. Mantle cooling directly regulates
the thermal history of the core and thus the existence of a planetary
magnetic field. The significance of the new scaling laws would be
best appreciated when modelling the thermal evolution of terres-
trial planets by parameterized convection, and such attempt will be
reported elsewhere. It is important to note, however, that the heat-
flow scaling of Fig. 13 should not be directly used in parameterized
convection; they need to be amended in various ways to cope with
realistic complications as discussed in the following sections.

4.3 Rewetting from below by hydrogen diffusion

Though melting is very effective in removing water (or hydrogen)
from the mantle, the dehydrated mantle is always underlain by un-
melted (wet) mantle, so it is continuously re-hydrated from below
by hydrogen diffusion. Because this rehydration could potentially
undermine the significance of dehydration stiffening in heat-flow
scaling, it is worth considering this diffusion process quantitatively.
Chemical diffusion in one dimension may be expressed generally
as

∂C

∂t
= ∂

∂z

[
D(z)

∂C

∂z

]
, (57)

where C denotes concentration and D(z) is the diffusion coefficient
that may be spatially variable. The diffusion of hydrogen in olivine
depends on temperature as

DH (T ) = DH,0 exp

(
− E

RT

)
, (58)

where DH,0 = 6 × 10−5 m2 s−1 and E = 130 kJ mol−1 (Mackwell
& Kohlstedt 1990). These values are for diffusion within a single
crystal; diffusion in olivine aggregates could be faster because of
grain boundaries, but no experimental constraint is available. The
diffusion coefficient varies from ∼3 × 10−8 m2 s−1 at 1800 ◦C to
∼3 × 10−9 m2 s−1 at 1300 ◦C, so diffusion distance could be a
few tens of km over billion years. In the colder part of lithosphere,
however, diffusion would be much slower; at 1100 ◦C, for example,
DH = ∼6 × 10−10 m2 s−1, corresponding to the diffusion distance
of only ∼8 km for 4 Gyr.

To estimate an ‘effective’ diffusion coefficient for hydrogen dif-
fusion in the top thermal boundary layer, the above diffusion equa-
tion was numerically integrated. A linear temperature profile is
assumed for the boundary layer (e.g. Fig. 5), which is initially dry
(i.e. C = 0). and the base of the boundary layer is fixed to a constant
hydrogen concentration. This boundary condition is appropriate be-
cause the mantle just below the lid is continuously refreshed by
convection. The surface temperature is set to 273 K, and a temper-
ature increase across the boundary layer is �T . Numerical results
are shown in Fig. 15, where distance is normalized by the boundary
layer thickness δ and time is by δ2/DH,0. The results may be cap-
tured by the following approximate formula for the non-dimensional
diffusion distance:

d∗ ≈ (D∗
H,eff t∗)1/2, (59)

where

D∗
H,eff = −0.0027 + 2.19 × 10−6�T, (60)

and its dimensional version is given by

d ≈ (D∗
H,eff DH,0 t)1/2. (61)

The above approximate formula may be used in parameterized
convection modelling to adjust the thickness of the dehydrated lid
during time integration. Whereas the lid thickness is continuously
reduced by rehydration, however, further mantle melting could re-
cover the original thickness if the mantle is hot enough. The sig-
nificance of rehydration is thus expected to vary among different
scenarios for planetary evolution.

4.4 Other important complications

For heat-flow scaling with mantle melting (Figs 12d and 13), the ini-
tial pressure of melting P0 is used to define the base of the depleted
lid at a given internal temperature. This is equivalent to assum-
ing that the depleted lid achieves its maximum possible thickness
‘globally’, and the plausibility of this assumption rests on the vigor
of convection beneath the stagnant lid. The globally averaged lid
thickness may not reach the upper limit if convection is too slow to
efficiently differentiate the mantle. The velocity scaling of eq. (34)
with the correction factor θeff/θ (eq. 41) would be useful to track
the growth of the depleted lid in parameterized convection.

Also, contrary to what Figs 12(c) implies, the thickness of the
depleted lid does not have to decrease as the internal tempera-
ture decreases. If the mantle melts efficiently and the maximum lid
thickness is achieved at some high temperature during the very early
phase of planetary evolution, the thick lid could suppress further
melting because a colder mantle does not melt beneath the lid. Be-
cause the thermal history of a terrestrial planet usually starts at an
initially high mantle temperature, surface heat flux could be effec-
tively fixed to a low value corresponding to the initial temperature.

C© 2009 The Author, GJI, 179, 154–170

Journal compilation C© 2009 RAS



Scaling of depleted stagnant lid 167

Figure 12. Scaling for stagnant-lid convection at the Earth condition. Newtonian rheology with the activation energy of 300 kJ mol−1 is used. Reference
viscosity is chosen so that conventional scaling predicts surface heat flux of 50 mW m−2 at Ti = 1350 ◦C. (a) Rai as a function of internal temperature. (b)
Nu–Ra relationship for conventional scaling (dashed), with the effect of compositional buoyancy (CB; dotted), with the effect of dehydration stiffening (DS;
dot–dashed), and with these two effects combined (CB+DS; solid). For dehydration stiffening, �η = 102 is assumed. For compositional buoyancy, simple
mantle melting used for Fig. 11 is used. (c) Thickness of thermal boundary layer as a function of internal temperature. The initial depth of melting is also shown
for comparison. (d) Predicted surface heat flux as a function of internal temperature. Solid circle denotes the reference point used to normalize viscosity.

Rehydration considered in the previous section is an important pro-
cess to reduce this strong dependency on the initial condition and
sustain crustal production to some extent.

In addition to hydrogen, mantle melting extracts heat-producing
elements such as U and Th from the mantle, and these elements are
condensed in the crust. Internal heat production in the crust insulates
the mantle, and it is more appropriate to use the temperature at
the crust–mantle boundary as the effective surface temperature for
stagnant-lid convection (e.g. Hauck & Phillips 2002). Quite a few
variables in the heat-flow scaling of eq. (56), therefore, need to be
tracked self-consistently in the coupled crust-mantle evolution of a
terrestrial planet.

4.5 Howard’s conjecture and Buckingham π theorem

The exponent β for the Nu–Ra relationship (e.g. eq. 30) has com-
monly been set to be 1/3 [or more generally n/(n + 2)] in the
previous studies on planetary evolution (e.g. Stevenson et al. 1983),
and this particular value has a strong theoretical support. Because q
is proportional to Nu D (eq. 19) and Ra is proportional to D(n+2)/n

(eqs 17 or 21), surface heat flux would become independent of the
mantle depth if β = n/(n + 2). It seems natural because, for vigor-
ous convection, surface heat flux may be controlled entirely by the
dynamics of the top thermal boundary layer and may not care how
deep the mantle is (e.g. Howard 1966). Note that the conventional
scaling shown in Fig. 12(b) has an apparent slope of 0.37 (instead
of 1/3), but this is because θ is not constant with increasing Rai ;

even with a constant activation energy, θ still varies as �T changes
(eq. 5).

The effects of mantle melting modifies this conventional scaling
considerably (Fig. 12b), but it does not necessarily mean that surface
heat flux becomes sensitive to the mantle depth. In fact, the new
heat-flow scaling is based solely on the convective stability of the
top thermal boundary layer. With mantle melting, the temperature
dependency of material properties cannot be adequately parameter-
ized by θ alone, so Nu must be a function of more than Rai and
θ (e.g. Buckingham 1914; Barenblatt 1996). In other words, the
asymptotic scaling of eq. (30) may be modified to

Nu ≈ aθ−1−β Raβ

i �3(Ti ), (62)

where �3(Ti ) is the third non-dimensional number that takes into
account the effects of mantle melting at a given internal tempera-
ture. As melting is not affected by the mantle depth, �3 does not
depend on D. The exponent β can stay as n/(n + 2), so surface heat
flux remains independent of the mantle depth. Instead of introduc-
ing this additional non-dimensional number, one could modify β

to incorporate the effects of mantle melting (e.g. Korenaga 2003)
though it may give a false impression that surface heat flux depends
on the mantle depth.

The conventional heat-flow scaling has been widely used
when constructing a likely cooling history for terrestrial planets
(e.g. Stevenson et al. 1983; Spohn 1991; Schubert et al. 1992, 1997;
Nimmo & Stevenson 2000; Hauck & Phillips 2002; Breuer & Spohn
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Figure 13. Preliminary heat-flow scaling laws for (a, d) Mars, (b, e) Venus, and (c, f) super-Earth. Top panel is for Newtonian rheology (n = 1), and bottom
panel for non-Newtonian rheology (n = 3). As in Fig. 12, legend is conventional scaling (dashed), with compositional buoyancy alone (dotted), with dehydration
stiffening alone (dot–dashed), and with both compositional buoyancy and dehydration stiffening (solid).

Figure 14. Nominal mantle cooling rate corresponding to surface heat flux shown in Fig. 14. Core and planetary radii are assumed as 1589 and 3389 km
(Mars), 3110 and 6051 km (Venus), and 4860 and 8920 km (super-Earth), respectively, and the product of mantle density and specific heat is set to 4 ×
106 J m−3 K−1. Legend is the same as Fig. 13.

2003), and such cooling history has often been used as a foundation
when interpreting various surface observations (e.g. Williams &
Nimmo 2004; Breuer & Spohn 2006; O’Neill et al. 2007; Parmen-
tier & Zuber 2007). The drastic modification of the conventional
scaling, as suggested by this study, may thus lead to a major revision
of our understanding of planetary evolution.
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Figure 15. Hydrogen diffusion distance as a function of time. Distance is
normalized by the thickness of thermal boundary layer δ, and three differ-
ent values are tested for a temperature contrast across the boundary layer:
1300 K (solid), 1500 K (dashed) and 1700 K (dotted). Time is normalized
by δ2/DH,0, where DH,0 = 6 × 10−5 m2 s−1.
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