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S U M M A R Y
Small-scale heterogeneities in the Earth’s mantle, the origin of which is likely compositional
anomalies, can provide critical clues on the evolution of mantle convection. Seismological
investigation of such small-scale heterogeneities can be facilitated by forward modelling of
elastic wave scattering at high frequencies, but doing so with conventional 3-D numerical
methods has been computationally prohibitive. We develop an efficient approach for comput-
ing high-frequency synthetic wavefields originating from small-scale mantle heterogeneities.
Our approach delivers the exact elastodynamic wavefield and does not restrict the geometry
or physical properties of the local heterogeneity and the background medium. It combines
the technique of wavefield injection and a numerical method called AxiSEM3D. Wavefield
injection can decompose the total wavefield into an incident and a scattered part. Both these
two parts naturally have low azimuthal complexity and can thus be solved efficiently using
AxiSEM3D under two different coordinate systems. With modern high-performance comput-
ing (on an order of magnitude of 105 CPU-hr), we have achieved a 1 Hz dominant frequency
for global-scale problems with strong deep Earth scattering. Compared with previous global
injection approaches, ours allows for a 3-D background medium and yields the exact solution
without ignoring any higher-order scattering by the background medium. Technically, we de-
velop a traction-free scheme for realizing wavefield injection in a spectral element method,
which brings in several flexibilities and simplifies the implementation by avoiding stress or
traction computation on the injection boundary. For a spherical heterogeneity in the mid-lower
mantle, we compare the 3-D full-wave solution with two approximate ones obtained, respec-
tively, by the perturbation theory and in-plane (axisymmetric) modelling. As a comprehensive
application, we study S-wave scattering by a 3-D ultra-low velocity zone, incorporating 3-D
crustal structures on the receiver side as part of the background model.

Key words: Composition and structure of the mantle; Computational seismology; Theoreti-
cal seismology; Wave propagation; Wave scattering and diffraction.

1 I N T RO D U C T I O N

Lateral heterogeneities in the Earth’s mantle and their roles in
mantle dynamics have long been discussed in solid Earth geo-
physics. Seismic tomography, as one of the primary probings of
the Earth’s interior, has exhibited good agreement on the predomi-
nance of long-wavelength heterogeneities in the mantle (Becker &
Boschi 2002; Auer et al. 2014), such as the two large low-shear-
velocity provinces (LLSVP; Zhao 2004; Garnero et al. 2016) atop
the core–mantle boundary (CMB), stagnant or deep-thrusting sub-
ducted slabs (Sigloch et al. 2008; Fukao & Obayashi 2013) and
deep-rooted mantle plumes (Montelli et al. 2006; French & Ro-
manowicz 2015), manifesting the first-order pattern of large-scale

mantle convection (Silver et al. 1988; Zhao 2004; Garnero & McNa-
mara 2008). Apart from these long-wavelength features, a number
of seismological studies have indicated the abundance of small-
scale heterogeneities across the entire mantle (Hedlin et al. 1997;
Kaneshima 2016). Such heterogeneities have been associated with
subducted oceanic plates that have undergone various processes
such as convective mixing (Kellogg & Turcotte 1987; van Keken
et al. 2002), crustal segregation (Christensen & Hofmann 1994;
Karato 1997), phase transition (Ringwood & Irifune 1988; Bina
et al. 2001) and partial melting (Defant & Drummond 1990; Pea-
cock et al. 1994). Constraining the distribution, morphology and
strength of such small-scale heterogeneities, in turn, can provide
insights into the nature of these complex processes. In addition to
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subducted slabs, isolated small patches known as the ultra-low ve-
locity zones (ULVZ) have been discovered on the CMB (Garnero
& Helmberger 1995; Helmberger et al. 2000), commonly within or
near the edges of a LLSVP (Yu & Garnero 2018), whose origin has
been ascribed primarily to partial melting or some mantle hetero-
geneity reacting with the core (Williams & Garnero 1996; Garnero
& McNamara 2008). Assessing the geometry and seismic properties
of the ULVZs can help constraining their chemical identity and un-
derstanding the evolution of the LLSVPs or thermochemical piles in
the context of deep mantle flow (Thorne et al. 2013; Li et al. 2017).

Forward modelling can play a fundamental role in seismologi-
cal studies of small-scale mantle heterogeneities. First, it can help
revealing the physics of wave scattering as a basis for data inter-
pretation. In this paper, the term ‘wave scattering’ generally means
that an elastic wavefield is altered by a heterogeneity such as due to
reflection, refraction or diffraction. As opposed to the weak, long-
wavelength mantle inhomogeneity that smoothly alters the travel-
time and amplitude of an incident body wave, a strong, localized
heterogeneity can involve more complicated wave scattering phe-
nomena, usually with new seismic phases generated upon multiple
wave encounters on its boundaries. Such scattering effects can de-
pend non-linearly on the location, geometry and physical properties
of the heterogeneity, leading to elusive observations on the surface.
With the help of forward modelling, one can zoom into the scat-
tering processes and explain their surface expressions, such as for
narrow-conduit plumes (Hwang et al. 2011; Maguire et al. 2016),
subducted slabs (Haugland et al. 2017) and ULVZs (Rondenay et al.
2010; Cottaar & Romanowicz 2012; Thorne et al. 2013; Vanacore
et al. 2016). Secondly, physically realistic synthetic waveforms are
required to justify existing inversion methodologies. Broad-band
array data of scattered body waves have been utilized in differ-
ent ways for structural inversion or imaging. For instance, from a
random media viewpoint, stochastic analyses have suggested the
presence of small-scale scatterers (on an order of magnitude from
10 to 100 km) throughout the mantle, using various scattered phases
such as P coda (Shearer & Earle 2004), Pdiff coda (Earle & Shearer
2001) and PKP precursors (Hedlin et al. 1997; Margerin & No-
let 2003). Regional distributions of such scatterers may be further
constrained by a deterministic location method (Kaneshima & Helf-
frich 1998; Korenaga 2015; Frost et al. 2018), which projects the
scattered energy back to the Earth’s interior based on the ray theory.
These data-intensive array approaches are persistently challenged
by a low signal-to-noise ratio and sparse observations, for which
waveform stacking plays an essential role (Rost & Thomas 2002;
Korenaga 2013). From a theoretical perspective, nearly every array
approach (either stochastic or deterministic) implies the linear per-
turbation theory or the Born approximation (Hudson & Heritage
1981; Dalkolmo & Friederich 2000) so that the influence of each
point scatterer in the interior can be superposed at an observation
point on the surface. Because of these challenges, the efficacy of the
array approaches must be verified using broadband synthetic data
(along with artificial noise) obtained from 3-D waveform modelling.
Finally, forward modelling is the basic element of full-waveform in-
version techniques such as adjoint tomography (Bozdağ et al. 2016)
and Bayesian inference with Monte Carlo sampling (Hong & Sen
2009; Gebraad et al. 2019). Such inversion techniques seem partic-
ularly suitable for an isolated heterogeneity (such as a ULVZ) be-
cause they can potentially handle the strong non-linearity involved
in wave scattering while the scale of the inverse problem can be
restricted by the small target area. Nevertheless, their applications
are still hindered due to inadequate computing power for forward
modelling.

A fine structural scale necessitates forward modelling at a high
frequency. This paper is targeted at a dominant frequency at 1 Hz,
capable of resolving a length scale of 2–10 km in the deep man-
tle. At a high frequency near 1 Hz, comprehensive 3-D numerical
methods such as finite difference method (FDM; Igel et al. 2002;
Moczo et al. 2002) and spectral element method (SEM; Komatitsch
& Tromp 2002; Afanasiev et al. 2019) are not accessible for the
foreseeable future (with a cost estimation of 108 CPU-hr for one
global-scale simulation with a 1-hr seismogram length). Recent for-
ward studies of this kind have been conducted at a period around
10 s (e.g. Cottaar & Romanowicz 2012; Maguire et al. 2016). A
new hybrid 3-D method, AxiSEM3D (Leng et al. 2016, 2019), has
been recently developed. By exploiting the azimuthal sparsity of a
global wavefield, it delivers a speedup between 2 and 3 orders of
magnitude for a 3-D tomographic mantle model near 1 Hz. In the
presence of a localized mantle heterogeneity, such a speedup can be
maintained with an in-depth tuning of the azimuthal parametriza-
tion of the wavefield using a technique called ‘wavefield scanning’
(Leng et al. 2019); however, wavefield scanning must start from
a trial simulation with an oversampling azimuthal parametrization,
which can be too expensive to achieve at a high frequency.

To overcome the insufficiency of computing power, two approx-
imations can be adopted, the perturbation theory and 2-D in-plane
modelling: the former simplifies the wave scattering physics and
the latter reduces the dimensionality of the heterogeneity. The linear
perturbation theory, also known as the Born approximation (Hudson
& Heritage 1981; Dalkolmo & Friederich 2000), regards a hetero-
geneity as an assembly of independent point scatterers and thus
ignores any multiscattering effects within the heterogeneity. Conse-
quently, the computation of the scattered waveforms can be simpli-
fied as an integral (known as the Love integral) over space and time
of the product of three constituents (Dalkolmo & Friederich 2000):
the model perturbation, the incident wavefield and the Green’s func-
tion. Expensive 3-D wave propagation is avoided because both the
incident wavefield and the Green’s function are computed with the
background model (usually spherically symmetric). Nevertheless,
the Born approximation has good accuracy only for a rather lim-
ited parameter space with a weak perturbation strength (|δv| <

5 per cent) and a subwavelength structural scale (Hudson & Her-
itage 1981; Wu & Aki 1985; Korneev & Johnson 1993). Though
the limit of perturbation strength can be relaxed (to cover |δv| <

50 per cent) via the ‘long-wave’ extension (Gubernatis 1979; Gritto
et al. 1995), the requirement of subwavelength structural scales
still implies the incapability of resolving structural details. Now we
move on to in-plane modelling in 2-D. The 3-D elastodynamic prob-
lem can be reduced to 2-D by assuming axisymmetry of a lateral
heterogeneity, with its structural variation confined to the source–
receiver plane. Under this assumption, several axisymmetric meth-
ods have been developed (Igel & Weber 1995; Jahnke et al. 2008;
Li et al. 2014; Nissen-Meyer et al. 2014), capable of unravelling
the primary in-plane scattering effects at a substantially reduced
computational cost. Many recent forward studies of small-scale
mantle heterogeneities fall under this category (Rondenay et al.
2010; Thorne et al. 2013; Vanacore et al. 2016; Haugland et al.
2017, 2018). Its disadvantage is also clear: a localized 3-D hetero-
geneity will generate strong off-plane scattered energy (behaving
as a secondary source), which in turn can be useful in constraining
the lateral dimensions of the heterogeneity (Dalkolmo & Friederich
2000; Cottaar & Romanowicz 2012; Maguire et al. 2016; Leng
et al. 2019). Meanwhile, even within the source–receiver plane,
the axisymmetric assumption may cause considerable waveform
discrepancies from a full 3-D solution (Leng et al. 2019). Some
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ray-based corrections have been developed to remedy such discrep-
ancies (Helmberger & Ni 2005; Li et al. 2014), but available only
for weak, long-wavelength inhomogeneity.

Elastic wave scattering by a small-scale heterogeneity in the man-
tle is essentially a cross-scale problem, that is, scattered wave gen-
eration is at a local scale (∼10 km) but propagation is at a global
scale (∼1000 km). The technique of wavefield injection comes
as a cross-scale framework to solve such a cross-scale problem.
Under this framework, a subdomain that contains the small-scale
heterogeneity is separated from the large, entire domain so that
two different numerical methods or discretizations can be used to
solve the wave equation inside and outside the subdomain in se-
quence. The wave propagator used inside the subdomain has to be
sufficiently comprehensive (and thus computationally expensive) to
capture any 3-D scattering effects in the near field, whereas the one
outside is supposed to be highly efficient for wave propagation in
the far field based on certain approximations (such as symmetry of
the background model). The basic idea may date back to Alterman
& Karal (1968), who incorporated a ‘source box’ into a finite dif-
ference grid to handle the cross-scale effect of a point source. Since
then, such an approach has received broad applications and develop-
ments from the finite difference community, as reviewed by Opršal
et al. (2009). It has often been referred to as the ‘hybrid method’
in the literature because it solves the total wavefield inside and the
scattered wavefield outside the subdomain. To avoid any ambiguity
(as AxiSEM3D by itself is a hybrid method), we always refer to
such a methodology as ‘wavefield injection’, a term introduced by
Robertsson & Chapman (2000).

At a continental to global scale, wavefield injection has been
realized, combing a comprehensive local solver with a more effi-
cient global solver, for instance, a 2-D FDM with the Kirchhoff
method (Wen & Helmberger 1998), a 3-D SEM with the direct
solution method (Monteiller et al. 2012, 2015), a 3-D SEM with
the frequency–wavenumber method (Tong et al. 2014a, b), a 3-D
regional SEM with a 3-D global SEM (Clouzet et al. 2018) and a
3-D SEM or FDM with a database of precomputed 1-D Green’s
functions (Pienkowska-Cote et al. forthcoming). A general theo-
retical framework along with a guideline for implementation in
FDM and SEM can be found in Masson et al. (2013) and Masson
& Romanowicz (2016). Most of these studies have been focused
on strong scattering around the earthquake source or the receivers,
with the subdomain located right beneath the Earth’s surface. Using
a 2-D SEM, Lin et al. (2019) have demonstrated the potential of
applying such a concept to deep Earth scattering, who have also
provided an inclusive review on the existing implementations in
forward modelling and inversion.

It is emphasized that, though wavefield injection is motivated by
promoting the computational efficiency for a cross-scale problem,
it belongs to the genre of exact wavefield methods with no com-
promise on the accuracy of solution. From an inverse perspective,
applying wavefield injection does not impose any additional limi-
tation on an inverse problem restricted in a localized region of the
Earth’s interior (Masson & Romanowicz 2017; Clouzet et al. 2018).
Further, we clarify two distinctions. First, wavefield injection is dis-
tinct from the perturbation theory: though both involve a sequential
computation of the incident and the scattered wavefields, the former
honours the exact wave scattering physics and thus preserves any
non-linear multiscattering effects. Also, it is distinct from another
kind of hybrid approaches that couple two computational domains
or discretizations during the time loop of an ‘all-in-one’ simulation,
for examplehe ‘sandwich’ approach that couples SEM and normal
mode (Capdeville et al. 2003a, b) and AxiSEM3D that couples the

spectral element and the pseudospectral discretizations (Leng et al.
2016, 2019).

In this paper, we combine wavefield injection and AxiSEM3D
to compute the 3-D scattered wavefield originating from a small-
scale heterogeneity in the Earth’s mantle at a high frequency up
to 1 Hz. Different from any existing implementations of wavefield
injection that have involved two different wave propagators, we use
AxiSEM3D to solve both the incident and the scattered wavefields.
Our approach, however, is not just another implementation with
some different wave propagator but a stand-alone, physics-based
approach that can maximally exploit the spatiotemporal sparsity
of both the incident and the scattered wavefields. This relies on the
wavefield adaptivity of AxiSEM3D (Leng et al. 2016, 2019), that is,
its computational cost can be optimized to the azimuthal complex-
ity of a 3-D wavefield; for instance, it naturally degenerates to an
axisymmetric SEM (AxiSEM, Nissen-Meyer et al. 2014) for a 1-D
earth model and can be a few orders of magnitude faster than a con-
ventional 3-D SEM for a smooth, long-wavelength mantle model.
In this sense, the role of wavefield injection can be understood
as the decomposition of the total wavefield into an incident and a
scattered part, both of low azimuthal complexity (but under two dif-
ferent coordinate systems) for efficient solutions with AxiSEM3D.
The most distinguishing feature of our approach is the capability
to incorporate a 3-D background model at a high frequency, such
as a tomographic mantle model with 3-D crustal structures. Be-
sides, our approach does not involve domain truncation at the local
scale and thus preserves any higher-order interactions between the
heterogeneity and the background medium. Such interactions can
also be honoured by an exact boundary condition (van Manen et al.
2007; Masson & Romanowicz 2017).

The rest of this paper is structured as follows. Our approach will
be elaborated in the following methodological section, including
its theory, implementation and characteristics; notably, we derive
a traction-free scheme that can largely facilitate any SEM-based
implementation of wavefield injection. In Section 3, we verify our
implementation by a nearly error-free benchmark solution against
a conventional 3-D SEM. Sections 4 and 5 contains two deep Earth
applications, both accomplished at a 1 Hz dominant frequency. In
Section 4, we study a spherical heterogeneity in the mid-lower man-
tle, where we use the 3-D full-wave solution to assess the error of the
two approximate solutions obtained, respectively, by the perturba-
tion theory and 2-D in-plane modelling. In Section 5, we carry out a
comprehensive case study about a ULVZ, incorporating 3-D crustal
structures on the receiver side as part of the background model; we
zoom into the scattering process around the ULVZ through wave-
field animations, which help us to identify the origin of all scatter
phases in the seismograms; next, we study the scattering effects of
the 3-D crust and finally use the synthetic data to image the ULVZ
by teleseismic migration. Section 6 summarizes the features of our
approach and the findings from the numerical examples and ends
up with some further discussions related to wavefield extrapolation
and source- or receiver-side heterogeneities.

2 M E T H O D

In this section, we elaborate the theory, implementation and char-
acteristics of our approach. We start from a brief introduction to the
fundamentals of AxiSEM3D, with emphasis on the azimuthal com-
plexity of a 3-D wavefield. Next, we revisit the theory of wavefield
injection from a new perspective; it realizes the decomposition of the
total wavefield into an incident and a scattered part, both of which
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Figure 1. Dimension reduction in AxiSEM3D, adapted from Leng et al.
(2016). In the source-centred coordinate system (s, φ, z), we reduce the 3-D
computational domain � to a 2-D meridian domain D through a Fourier
series characterization of the φ-dimension. At different locations in D, the
Fourier series may contain different number of terms, that is, nu = nu(s, z),
determined by the azimuthal complexity of the wavefield. In this example,
we show nu(s, z) for a PREM model including a spherical heterogeneity
(with a radius of 160 km and a 50 per cent velocity reduction, located at 30◦
in distance and 1200 km in depth), obtained by wavefield scanning (Leng
et al. 2019) at a 5 s period and with a 1-hr record length.

have low azimuthal complexity and can thus be solved efficiently
with AxiSEM3D. Based on this reformalization, we design a new
traction-free scheme for implementing wavefield injection in any
2-D or 3-D SEM. Finally, we realize such a scheme in AxiSEM3D
and formulate and measure its computational cost.

2.1 AxiSEM3D

AxiSEM3D is a numerical method to solve wave propagation in 3-D
geometry and media, a hybrid of SEM and Fourier-spectral method.
Consider an earth model with volume �, density ρ and elasticity
tensor C. Subject to a point moment tensor M at location rs and a
stress-free boundary condition on the surface (∂�), the equations
of motion can be written as the following weak form:∫

�

(
ρ∂2

t u · w + ∇u : C : ∇w
)

dr3 = M : ∇w(rs), (1)

where u(r; t) and w(r) denote, respectively, the displacement field
and an arbitrary test function.

As shown in Fig. 1, in a source-centred cylindrical coordinate
system, that is, u = u(s, φ, z; t), Leng et al. (2016) parametrize the
azimuthal dimension (φ-dimension) by Fourier series, that is,

u(s, φ, z; t) =
∑

|α|≤nu

uα(s, z; t) exp(iαφ), (2)

where uα(s, z; t) are the Fourier coefficients of u(s, φ, z; t), defined
in the 2-D meridian domain D. Applying the same parametrization
to the material properties and the moment tensor, we can reduce the
3-D weak form, eq. (1), to an algebraic system of coupled 2-D weak
forms in D:∑

|α|≤nu

∫
D

ρ−(α+β)∂2
t uα · wβs dsdz

+
∑

|α|≤nu

∫
D

∇Duα : C−(α+β) : ∇Dwβs dsdz

= M−β : ∇Dwβ (rs), ∀β ∈ [−nu, nu] ∩ Z, (3)

where ∇D denotes the gradient operator in D (see eq. (26) in Leng
et al. 2016). The right-hand side term, M−β : ∇Dwβ (rs), vanishes
unless |β| = 0, 1 or 2, respectively, corresponding to the monopole,
dipole and quadrupole radiation patterns emanating from a point
moment tensor [see eq. (49)–(51) in Leng et al. 2016].

Eq. (3) is equivalent to eq. (1) but with collapsed φ-dimension,
which enables us to solve uα(s, z; t) in 2-D as an alternative to solv-
ing u(s, φ, z; t) in 3-D. It contains (2nu + 1) weak forms coupled by
the Fourier coefficients of the material properties, ργ and Cγ , as for-
mally expressed by the two summations over α. Leng et al. (2016)
developed a 2-D SEM to solve uα(s, z; t) from eq. (3), named as
AxiSEM3D. Leng et al. (2019) extended the above theory to aspher-
ical geometry to accommodate undulating vertical discontinuities
(such as the Earth’s surface and Moho) based on the particle rela-
belling transformation (Al-Attar & Crawford 2016; Al-Attar et al.
2018).

The number of terms in the Fourier series parametrization, nu

in eq. (2), plays a central role in AxiSEM3D. In theory, it can be
a function of both time and position in D, that is, nu = nu(s, z;
t); in practice, however, we only use a time-independent one, nu

= nu(s, z), because varying it with time demands dynamic domain
repartitioning in the context of high-performance computing (HPC).
At a given location, nu can be bounded from above such that the
wavelength resolution in the φ-direction matches that in D, namely,

nsup
u (s, z) = 2πs

λ(s, z)
× ND × 1

2
= π NDs

λ(s, z)
, (4)

where λ(s, z) denotes the spatial resolution taken as the local wave-
length (S-wavelength in solid or P-wavelength in fluid), and thus
2πs/λ the number of wavelengths along the circle generated by
revolving the point (s, z), and ND the number of gridpoints in D
to resolve one wavelength in the s- or z-direction, a constant nor-
mally ranging from 6 to 8 in SEM, and the rearward 1/2 stems from
the equivalence of one complex term in the Fourier series and two
grid points along the circle. Given the Earth model or λ(s, z), nsup

u

scales with s, the distance to the axis. Owing to the coupling of the
Fourier modes, solving an eq. (3) with nu(s, z) = nsup

u (s, z) will be
more expensive than solving eq. (1) in 3-D. To make the Fourier
parametrization or eq. (2) meaningful, we require∫

D
nu(s, z) dsdz 


∫
D

nsup
u (s, z) dsdz. (5)

In other words, the 3-D wavefield must have low azimuthal com-
plexity by nature or, as we describe in this paper, must be quasi-
axisymmetric in the chosen coordinate system.

As a matter of fact, such quasi-axisymmetry does exist commonly
for global Earth structures. In the simplest case, if the Earth model
is axisymmetric, namely, ργ = 0 and Cγ = 0 for |γ | > 0, eq. (3)
will become decoupled:∫

D

(
ρ0∂2

t u−β · wβ + ∇Du−β : C0 : ∇Dwβ
)

s dsdz

= M−β : ∇Dwβ (rs), ∀β ∈ {0, 1, 2}. (6)

It contains only three independent weak forms, respectively, with
unknowns u0, u1 and u2, or nu(s, z) = 2. It is equivalent to the non-
tensorial weak forms by Nissen-Meyer et al. (2007) and strong
forms by Li et al. (2014). Next, as closely examined by Leng
et al. (2016, 2019), nu ∼ 102 for the state-of-the-art tomographic
mantle models, leading to a speedup from 102 to 103 in refer-
ence to a conventional 3-D SEM below a 5 s period. The wave
physics behind this is that the weak, long-wavelength inhomogene-
ity cannot substantially alter the radiation patterns dominated by
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the point moment tensor and in-plane scattering. Such a speedup
may drop by one order of magnitude with a 3-D crust (Crust 1.0,
Laske et al. 2013) because nu will increase to ∼103 above the
penetration depth of the surface waves and the time step will
be diminished by the thin oceanic plates (Leng et al. 2019). In
short, by varying nu in D, the computational cost of AxiSEM3D
can be adapted to the azimuthal complexity of the 3-D wave-
field, which is dominated by the complexity of the 3-D model.
Such adaptivity distinguishes AxiSEM3D from a conventional
3-D method.

A strong, small-scale heterogeneity in the mantle poses a more
outstanding challenge. An incident wave, upon encountering the
heterogeneity, initiates a scattered wave that resembles a delta func-
tion in the φ-direction, leading to a large nu in the near field of the
heterogeneity. Such a scattered wave further propagates in all direc-
tions from the heterogeneity, forming a complicated nu(s, z) in the
far field. Such scattering and propagation effects are well illustrated
by the nu(s, z) shown in Fig. 1, obtained with a PREM earth model
(Dziewonski & Anderson 1981) including a spherical heterogeneity
in the mid-lower mantle. Being small in the far field (mostly smaller
than 150), this nu(s, z) demands a computational cost similar to that
for a global tomographic mantle model. However, its acquisition
is not straightforward. Leng et al. (2019) developed a technique
called ‘wavefield scanning’ to obtain such an nu(s, z), accomplished
by the following three steps: (i) start a simulation with a sufficiently
large Fourier expansion order, nstart

u (s, z); (ii) during the time loop,
monitor the required order, nscan

u (s, z), by checking the convergence
of the spectrum |uα(s, z)|; (iii) at the end of the simulation, store
the maximum nscan

u (s, z) over time. This stored nscan
u (s, z) can be re-

applied to a similar earth model, for example, the field in Fig. 1 to a
smaller or weaker heterogeneity at the same location. Nevertheless,
global wavefield scanning becomes unavailable at a high frequency
near 1 Hz because, as the frequency increases, nstart

u approaches to
nsup

u in the near field.
In brief, a strong, localized heterogeneity behaves more like a

secondary source, emitting scattered waves in all directions. Such
localization of energy, either at an earthquake source or near a het-
erogeneity, can be efficiently modelled in AxiSEM3D if it is located
on the axis. The reason is that, no matter how complex the wavefield
is, nu is always bounded from above by nsup

u , which scales with s
in eq. (4). Having this in mind, one may naturally come up with a
scheme of ‘decompose-and-rotate’, as illustrated in Fig. 2. Let u0

denote the incident wavefield that emanates from the earthquake
source but propagates in the background model (without the het-
erogeneity) and δu the scattered wavefield defined by the difference
(u − u0). Evidently, u0 and δu are both quasi-axisymmetric but
under two different coordinate systems: u0 is quasi-axisymmetric
about the earthquake and δu about the heterogeneity, that is, their
own sources of energy. Therefore, both of them can be efficiently
solved with AxiSEM3D under the two coordinate systems as long
as the decomposition, u = u0 + δu, can be exactly achieved—
this is where the technique of wavefield injection comes into
play.

2.2 Wavefield injection

The long-established theory of wavefield injection has been formu-
lated from different perspectives, for example, Opršal et al. (2009)
in a loose and understandable manner using the wave operator and
Masson & Romanowicz (2016) and Lin et al. (2019) based on
the representation theorems. Masson & Romanowicz (2016) have

shown that the representation theorems can naturally emerge from
the domain decomposition and have established an equivalence be-
tween the different approaches for implementing wavefield injec-
tion. Here we present the theory in the weak forms. Our formula-
tion is rigorous and concise, with emphasis on a natural construc-
tion of the hybrid wavefield and its quasi-axisymmetry under the
heterogeneity-centred coordinate system.

Let us consider a general 3-D elastic medium with volume �,
which encompasses a small-scale heterogeneity with volume H, as
shown in Fig. 3. Note that H can be located right below the surface
(∂H∩∂� �= ∅). Given the material properties ρ and C, a point
moment tensor M at rs and a stress-free boundary condition on ∂�,
the weak form for this problem is given by eq. (1). Now we choose
a closed surface, denoted �inj, to divide � into two subdomains,
the far-field subdomain �F and the near-field one �N, with H ∈
�N, as shown in Fig. 3. We refer to �inj as the injection boundary.
The smallest �inj we may choose is ∂H, but it is more convenient to
use a regularly shaped one slightly larger than ∂H for an irregular
heterogeneity. By introducing the traction t exposed on �inj, we can
rebuild eq. (1) upon the two subdomains as{∫

�F

(
ρ∂2

t u · w + ∇u : C : ∇w
)

dr3

= ∫
�inj

t · w dr2 + M : ∇w(rs),
(7a)

∫
�N

(
ρ∂2

t u · w + ∇u : C : ∇w
)

dr3

= − ∫
�inj

t · w dr2.
(7b)

Here we assume rs ∈ �F, but having rs in �N makes no difference
other than moving the source term M : ∇w(rs) from eqs (7a) to
(7b). Note that neither eq. (7a) nor (7b) can be solved independently
because t on �inj is introduced as an extra unknown. The summation
of the two goes back to eq. (1).

Next, we consider the background medium, whose density and
elasticity tensor are denoted, respectively, by ρ0 and C0, with ρ0

= ρ and C0 = C outside H. Respectively in line with eqs (1) and
(7), the weak forms for the background medium subject to the same
source and boundary conditions can be written as∫

�

(
ρ0∂

2
t u0 · w + ∇u0 : C0 : ∇w

)
dr3 = M : ∇w(rs), (8)

and∫
�F

(
ρ∂2

t u0 · w + ∇u0 : C : ∇w
)

dr3

= ∫
�inj

t0 · w dr2 + M : ∇w(rs),
(9a)

∫
�N

(
ρ0∂

2
t u0 · w + ∇u0 : C0 : ∇w

)
dr3

= − ∫
�inj

t0 · w dr2,
(9b)

where the solution u0 has been referred to as the incident wavefield.
Note that we have inserted ρ0 = ρ and C0 = C outside H into
eq. (9a).

Subtracting eq. (9a) from eq. (7a) 1 , we obtain∫
�F

(
ρ∂2

t δu · w + ∇δu : C : ∇w
)

dr3

=
∫

�inj

t · w dr2 −
∫

�inj

t0 · w dr2, (10)

1In general, addition or subtraction cannot be applied to two weak forms
even they are formally additive. Such addition further requires that the two
problems have the same Dirichlet (or displacement) boundary condition
such that the arbitrary test function w can always be chosen to be the same
in the two weak forms. This requirement is satisfied by eqs (9a) and (7a),
between which the only difference comes from the model parameters.
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Figure 2. Decomposition of a total wavefield into an incident and a scattered wavefield, u = u0 + δu. Excited by the earthquake source on the background
model, the incident wavefield u0 is quasi-asymmetric in the source-centred coordinate system (ss, φs, zs). The scattered wavefield δu, as defined by the
difference u − u0, is quasi-axisymmetric in the heterogeneity-centred coordinate system (sh, φh, zh). Once such a decomposition can be realized, AxiSEM3D
can efficiently solve u0 and δu, respectively, under the two different coordinate systems.

Ω

H Γinj

ΩF

Γinjt Γinj

−t

−t

source source

H= +

ΩN

−t

Figure 3. Sketch of wavefield injection. A heterogeneity H is included in
�, a bounded 3-D domain of elastic medium. An injection boundary �inj

enclosing H can be chosen to divide � into two subdomains, exposing the
traction t on �inj. Note that H can be located adjacent to the domain boundary
∂� and the source can be placed inside �inj.

where

δu
def= u − u0, (11)

which has been referred to as the scattered wavefield. In view of
the difference between eqs (7a) and (10), it is natural to construct
a hybrid wavefield, denoted uhy, which represents two different
physical wavefields in �F and �N:

uhy
def=

{
δu, r ∈ �F;
u, r ∈ �N.

(12)

Replacing eq. (7a) with (10), we obtain the weak forms for uhy:∫
�F

(
ρ∂2

t uhy · w + ∇uhy : C : ∇w
)

dr3

= ∫
�inj

t · w dr2 − ∫
�inj

t0 · w dr2,
(13a)

∫
�N

(
ρ∂2

t uhy · w + ∇uhy : C : ∇w
)

dr3

= − ∫
�inj

t · w dr2,
(13b)

or, cancelling t on �inj by adding the above two,∫
�

(
ρ∂2

t uhy · w + ∇uhy : C : ∇w
)

dr3 = −
∫

�inj

t0 · w dr2. (14)

Different from eqs (1) and (8), both complete, respectively, for
the solutions of u and u0, eq. (14) is incomplete for that of uhy.
This is because, in general, Dirichlet boundary conditions cannot
be automatically satisfied by a displacement-based weak form; in-
stead, they must be imposed upon the weak form as an additional
constraint. Eqs (1) and (8) are complete because u and u0 involve no
Dirichlet boundary condition (the stress-free surface is a Neumann
boundary condition honoured by the weak forms). In addition to
eq. (14), however, uhy must satisfy the following Dirichlet bound-
ary condition on �inj:

uhy

∣∣
r∈�N∩�inj

− uhy

∣∣
r∈�F∩�inj

= u0

∣∣
r∈�inj

. (15)

Such a condition enforces uhy to be discontinuous on �inj by a
prescribed gap of u0, as a consequence of its definition by eq. (12).
Combing eqs (14) and (15), we conclude that uhy is the wavefield
excited by two surface sources, that is, u0 and t0 on �inj, exerted on
the 3-D perturbed medium.

Thus far, we have established a complete theory for wavefield
injection, which suggests a two-stage approach as an alternative to
solving the all-in-one problem given by eq. (1). In the first stage, one
solves eq. (8) for the incident wavefield u0, recording u0 and t0 on
�inj and u0 at the receiver locations rr. This stage only involves wave
propagation in the background medium. In the second stage, one
solves eqs (14) and (15) for the hybrid wavefield uhy, injecting the
recorded u0 and t0 on �inj into the perturbed medium and recording
uhy or δu at rr. In the end, the total wavefield u can be reconstructed
at rr by u = u0 + δu.

Now we come back to deep Earth scattering and investigate the
azimuthal complexity of u0 and δu. Here we assume that the back-
ground mantle model be characterized by weak, long-wavelength
lateral heterogeneity. This assumption is consistent with our cur-
rent knowledge about the Earth’s mantle from seismic tomography.
In the case that the background model has a scattering strength
comparable to that of the small-scale heterogeneity, the problem
should be solved in an all-in-one fashion rather than by wavefield
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injection. Under this assumption, the incident wavefield u0 is quasi-
axisymmetric in the source-centred coordinate system, as illustrated
in Fig. 2(b). This can be explained from an energy perspective: lo-
calization of energy occurs only at the earthquake source, that is, the
right-hand side of eq. (8), which is placed on the axis in the source-
centred coordinate system. The quasi-axisymmetry of u0 has also
been verified by Leng et al. (2016, 2019). The hybrid wavefield
uhy, on the other hand, is quasi-axisymmetric in the heterogeneity-
centred coordinate system, as illustrated in Fig. 2c. The reasons
are similar but slightly more sophisticated: first, the two surface
sources [the right-hand side of eqs (14) and (15)] and the strong
3-D structures [the left-hand side of eq. (13b)] are both confined
to the near-field subdomain �N; secondly, once placed on the axis,
�N can be described by a small nsup

u owing to its small lateral ex-
tent, that is, s in eq. (4). Therefore, as proposed in Section 2.1 and
illustrated in Fig. 2, wavefield injection realizes the decomposition
of u into u0 and δu in the far field, both of which can be effi-
ciently solved with AxiSEM3D, respectively, under the source- and
heterogeneity-centred coordinate systems.

It must be emphasized again that the above two-stage approach,
that is, solving first eq. (8) and then eqs (14) and (15), yields the ex-
act solution identical to the all-in-one solution by eq. (1). Also, this
approach does not care about the location of the heterogeneity, that
is, whether it is near the source, in the deep interior or beneath the
receivers. However, because of the 3-D structures in H, the solution
of uhy or the second stage necessitates a 3-D global solver (even
the large background model is spherically symmetric or 1-D). If the
global solver can only handle a 1-D background model, as those
used by most existing injection approaches, the second stage has to
be conducted upon a truncated domain slightly larger than �N using
a local 3-D solver, and a third stage, known as ‘wavefield extrap-
olation’ (Masson et al. 2013; Masson & Romanowicz 2016), must
follow to obtain δu at the receivers. Such a three-stage approach be-
comes inexact due to the introduction of an absorbing boundary for
domain truncation. It is noted that this absorbing boundary can be
replaced by an ‘exact’ boundary condition to preserve the higher-
order interactions between the heterogeneity and the background
model (van Manen et al. 2007; Masson & Romanowicz 2017). This
exact boundary condition requires a precomputed database of the
Green’s functions based on the background model, with the point
source placed throughout a vicinity of the local domain boundary.
Assume that there are N gridpoints on the boundary; for a general
3-D background model, the database must be computed with a cost
of O(N) and demands a storage of O(N2), both difficult to realize
in 3-D; however, it becomes plausible for a 1-D background model,
with the computation and storage reduced to O(M) and O(M × N),
respectively, where M is the number of different depths of the N
gridpoints. In the scenario of wavefield extrapolation, AxiSEM3D
can be adopted as either the global or the local solver. Related topics
will be further discussed in Sections 6.1 and 6.2.

2.3 Implementation in SEM

This subsection aims for implementing wavefield injection in any
SEM in 2-D or 3-D. Based on the general scheme developed here,
we shall elaborate on our implementation in AxiSEM3D in the
following subsection.

Regardless of the used solvers, the only difficulty in implementing
wavefield injection is to record and inject the two surface sources
on �inj, that is, the right-hand side of eqs (14) and (15). In a straight
course, the traction source can be implemented as is based on the

following stress formula,

−
∫

�inj

t0 · w dr2 = −
∫

�inj

n · σ 0 · w dr2, (16)

where σ 0 and n denote, respectively, the incident stress tensor and
the unit norm on �inj. To follow this path, the global solver has to
compute and record σ 0 on �inj (e.g. Monteiller et al. 2012,using the
direct solution method). Masson et al. (2013) have shown the option
of directly recording t0 based on the discretization of the surface
integral in the representation theorem, which is essentially the same
as recording σ 0. If the local solver is an FDM (e.g. Masson et al.
2013; Opršal et al. 2009), the complete description of a wavefield
requires both displacement and stress on a staggered grid; in this
case, using eq. (16) becomes mandatory. Here we only consider
SEM, which is a pure displacement method.

Directly recording and injecting σ 0 or t0 on �inj may lead to three
complexities. First, many seismogram-driven global solvers are in-
capable of computing stress by its nature; additional development
work is required and the accuracy for stress may not match that for
displacement. Secondly, the surface integral on the right-hand side
of eq. (16) can be complicated by an irregular shape of �inj. Finally,
as a continuous Galerkin technique (Peter et al. 2011), SEM can-
not naturally handle the displacement gap on �inj; honouring such
discontinuity by increasing the number of degrees of freedom at
those Gauss–Lobatto–Legendre (GLL) points on �inj will neces-
sitate low-level changes to the SEM architecture, especially in an
HPC environment.

These difficulties can be solved by our traction-free scheme de-
scribed in Appendix A. This scheme is completely displacement-
based, which allows us to record and inject only u0 in the vicinity
of �inj instead of both u0 and t0 (or σ0) on �inj. Secondly, it avoids
computing any surface terms, either Neumann or Dirichlet; there-
fore, the geometry of �inj can be arbitrary. Finally, it features an
extremely simple implementation in SEM.

2.4 Implementation in AxiSEM3D

Following the traction-free scheme established in Fig. A2, we have
implemented wavefield injection in AxiSEM3D. Nothing is special
except that the recording and the injection of the incident wave-
field must be conducted in terms of Fourier series, respectively, in
the source-centred and the heterogeneity-centred coordinate sys-
tem. The technical details will be elaborated in Appendix B. The
complete process from mesh generation to post-processing will be
demonstrated in the following section. In this subsection, we focus
on determining the Fourier expansion order nu(s, z) for the hybrid
wavefield, a unique and critical step for using AxiSEM3D as the
underlying solver. Based on this nu(s, z), we provide an equation to
estimate the computational cost of an injection simulation.

2.4.1 Fourier expansion order of uhy

As explained in Section 2.1, the hybrid wavefield uhy is naturally
quasi-axisymmetric in the heterogeneity-centred coordinate system
(sh, φh, zh). Here we show how AxiSEM3D exploits such quasi-
axisymmetry via a small nu(sh, zh) for uhy based on the wave scat-
tering physics.

In an injection simulation with AxiSEM3D, the heterogeneity H
is placed around the axis and the injection boundary �inj becomes
an open curve with both its endpoints located on the axis, as shown
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in Fig. A1. This �inj divides the 2-D meridian domain D into a far-
field subdomain DF and a near-field subdomain DN, which form,
respectively, the meridians of �F and �N. To determine a nu(sh, zh)
sufficiently large for an exact description of uhy, we must take into
account three factors: (i) the azimuthal complexity of the injection
source, that is, u0 in the vicinity of �inj, (ii) the near-field scattering
of u0 by the heterogeneity and (iii) the far-field scattering of δu by
the background model.

Let us start from a 1-D background model. In this case, the
following nu(sh, zh) can be proved sufficient:

nhet
u (sh, zh) =

{
nsup

u (sh, zh), (sh, zh) ∈ DN;
max(s′

h,z′
h)∈�inj

nsup
u (s ′

h, z′
h), (sh, zh) ∈ DF.

(17)

In the near field, we adopt a full azimuthal resolution by using the
theoretical upper bound nsup

u (sh, zh) in eq. (4); this is because, first,
u0 loses its quasi-axisymmetry when expanded in (sh, φh, zh) and,
second, the 3-D structure inside H can be arbitrary. In the far field,
however, because the 1-D background model cannot generate any
off-plane scattering effects [or no mode coupling as in eq. (6)], nu

will never increase outside H; therefore, throughout DF, we can
constantly use the maximum nsup

u over �inj. In brief, nhet
u (sh, zh) is

completely determined by the heterogeneity in both DN and DF (so
we label it by ‘het’ in the superscript). Thanks to the small lateral
size of H, nhet

u is remarkably smaller than nsup
u in the vast far field,

which reflects the quasi-axisymmetry of uhy [recall eq. (5)] and thus
the efficiency of AxiSEM3D.

In the presence of a 3-D background model, a nbm
u (sh, zh) will

be added to nhet
u (sh, zh) in DF to account for the scattering of δu by

the background model. This nbm
u (sh, zh) can be determined follow-

ing the same way as determining the nu(ss, zs) for u0 in the first
stage, for example, by wavefield scanning with an fictitious earth-
quake source placed at the heterogeneity, as elaborated in Leng et al.
(2019) and briefed in Section 2.1. Different from nhet

u that is constant
in DF, nbm

u must be (sometimes highly) heterogeneous to unleash
the performance of AxiSEM3D (see e.g. Leng et al. 2019). Here
we emphasize the frequency dependency of these two nu fields. As
verified by Leng et al. (2016, 2019), nbm

u barely increases with fre-
quency for the state-of-the-art tomographic mantle models, whereas
nhet

u scales with frequency because λ appears on the denominator
in eq. (4). At some high frequency, therefore, the sum of the two
will still be dominated by nhet

u , which implies that the computation
costs with and without a 3-D background model can be similar (or
at least on the same order of magnitude).

2.4.2 Computational cost

Given an arbitrary 3-D heterogeneity in a 1-D background model,
the computation cost for an injection simulation with a nhet

u given
by eq. (17) can be explicitly written as

cinj = Cbm × Chet × ω3 ×
(

ω max
�inj

s

vs

)
, (18)

where Cbm and Chet are two model-dependent constants, ω the fre-
quency, s the distance to axis and vs the shear velocity. Note that vs

is determined by the background model because our traction-free
scheme requires �inj∩∂H = ∅. eq. (18) shows that the heterogene-
ity affects the computational cost only via its lateral size (or s),
irrespective of its shape and perturbation strength.

We first explain the scaling characteristics of eq. (18). The factor
ω3 accounts for the two in-plane spatial dimensions and the time
dimension, and ω max�inj

s
vs

for the azimuthal dimension (because

nhet
u in DF is proportional to this term). Note that the computa-

tional cost is governed by the constant nhet
u in the vast far field

in eq. (17), whereas the difference due to the small near field
is negligible. Such a scaling behaviour is distinct from what has
been observed for a weak, long-wavelength inhomogeneity. As ver-
ified by Leng et al. (2016, 2019), AxiSEM3D has a computational
cost scaling with ω3 for a tomographic mantle model, so it can be
significantly more efficient than a 3-D SEM at a high frequency.
For a small-scale heterogeneity, however, its computational cost
scales with ω4, the same as that of a 3-D SEM. Instead of fre-
quency, the speedup now stems from the small lateral size of the
heterogeneity.

Now we explain the two constants and report their measurements
on Archer, the UK National Supercomputing Service. The con-
stant Cbm depends only on the background model and has a unit of
CPU-hr 3. Adopting a mesh resolution of 1.5 elements (or 6 GLL
points) per wavelength and a 30-min record length (using the ex-
plicit second-order Newmark time scheme), our global-scale tests
show that Cbm ≈ 14 000 CPU-hr3 for a visco-elastic, anisotropic
PREM, including a 25 per cent parallelization penalty due to un-
balanced I/O operations (reading in u0 on the injection elements
and writing seismograms at the receivers). For surface wave mod-
elling with the heterogeneity located in the crust or the uppermost
mantle, the number of elements per wavelength should be increased
to 2.0, whereby Cbm will be increased by 1.5–2 times. The con-
stant Chet is dimensionless, which reflects any mesh refinements
required by the velocity structure or geometry of the heterogeneity;
Chet = 1 if no refinement is needed. There are two typical situa-
tions where mesh refinements become necessary: first, the shear
velocity of the heterogeneity is smaller than that of the background
medium (because the element size is determined by the local S-
wavelength); secondly, the boundary of the heterogeneity, which is
not an interface in the background model, is required to be exactly
honoured by the mesh. For instance, to accommodate a ULVZ with
a 30 km height and a 50 per cent vs reduction, one should refine
the mesh generated based on PREM by first adding a radial dis-
continuity at 30 km above the CMB and using a halved mesh size
between CMB and the new discontinuity; such refinements lead to
Chet ≈ 1.3. Mesh refinements are automatically performed by our
mesher.

To visualize the efficiency suggested by eq. (18), let us consider
a spherical heterogeneity with a 50 km radius, located in the mantle
where vs = 7 km s–1. As estimated by eq. (18), the computational
cost at 1 Hz for a 30-min record length approaches 100 000 CPU-
hr, expensive but readily achievable with modern HPC; such a cost
rapidly decreases to ∼6250 CPU-hr at 0.5 Hz, which may enable
a parameter study with a good number of simulations; finally, it
plunges to ∼400 CPU-hr at 0.25 Hz, which could even empower a
full-waveform inversion algorithm. It must be noted that the compu-
tational cost given by eq. (18) has been derived and measured using
the constant nhet

u in DF, as given by eq. (17). Such a constant nhet
u

guarantees that the scattered wavefield is solved exactly throughout
the Earth’s interior. This is the worst case in terms of computational
cost. In practice, nhet

u can be further optimized, for example, using
wavefield scanning (Leng et al. 2019), taking into account propa-
gation effects such as structural complexity, record length and path
geometry. In this paper, however, we ignore any case-dependent
optimizations and always report the highest computational cost for
an exact global solution.

Using a 3-D background model will increase the above com-
putational cost to different extents. Such an increase cannot be
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summarized by a simple equation like eq. (18) because of the het-
erogeneous distribution of nbm

u (sh, zh) (see Leng et al. (2019) for
various examples obtained by wavefield scanning). As analysed in
Section 2.4.1, the different frequency-scaling behaviours of nbm

u and
nhet

u suggest that, at the low-frequency end, the computational cost
will be dominated by nbm

u or the complexity of the background
model while, at the high-frequency end, by nhet

u or the lateral size of
the heterogeneity. Both these limit cases will appear in the numerical
examples.

3 V E R I F I C AT I O N

In this subsection, we verify our injection approach by a benchmark
solution against a discretized 3-D SEM, SPECFEM3D GLOBE
(SPECFEM, Komatitsch & Tromp 2002). We also conduct a re-
production test to measure the numerical errors originating from
wavefield injection.

3.1 Benchmark setup

We consider a spherical heterogeneity located in the mid-lower man-
tle on top of a global tomographic model S40RTS (Ritsema et al.
2011), as detailed in Fig. 4. The dominant period is 10 s (NEX =
432 in SPECFEM). In order to generate sufficiently strong scatter-
ing effects (so that they cannot be modelled by any approximate
approaches), we use an extraordinarily strong (δvs = 50 per cent)
and large (R = 250km ≈ 4λs) heterogeneity. Neither the SPECFEM
nor the AxiSEM3D mesh can exactly honour the spherical shape
of the heterogeneity. A sharp spherical boundary will be smoothed
by a spatial interpolation over the spectral elements it cuts through
and thus interpreted differently in SPECFEM and AxiSEM3D. To
completely avoid the error caused by model misinterpretation, we
let the material perturbations gradually decrease to zero across an
outer shell with a 50 km thickness, which is slightly smaller than
the local S-wavelength but can still be well sampled by the 4–5
GLL points distributed within it. Such a thick, gradual boundary
is adopted only for benchmark purpose and will be dropped in the
other numerical examples.

For the earthquake source, we use a fully axisymmetric moment
tensor (Mrr = 2, Mtt = Mpp = −1, Mrt = Mtp = Mpr = 0) so that
any SH-energy observed in the transverse displacement originates
from the 3-D structure. The source depth is 600 km. We adopt a
30 min seismogram length to cover most of the significant scattered
phases. We compare the seismograms at more than 3000 receivers
distributed uniformly on the surface, covering an epicentral distance
from 10◦ to 150◦ and an azimuth from 0◦ to 90◦. For each pair
of seismograms obtained by SPECFEM and wavefield injection
with AxiSEM3D, we quantify their goodness-of-fit by the time-
frequency misfits (Kristeková et al. 2009). Similar to Chaljub et al.
(2015), we calculate the scores of goodness-of-fit by 10exp [ −
max (|EM|, |PM|)], where EM and PM denote, respectively, the
globally normalized envelope and phase misfits; a score of 10 means
a perfect match.

The reference solution can be obtained from two simulations
with SPECFEM, one for u0 (S40RTS without the heterogeneity)
and the other for u (S40RTS with the heterogeneity), and δu is
then computed by (u − u0). Wavefield injection with AxiSEM3D is
accomplished by the following steps:

(i)Mesh generation: generate a mesh based on PREM, as shown in
Fig. 4, which will be used for both the incident simulation and the
injection simulation; no mesh refinement is required because the

shear velocity perturbation is positive (see Section 2.4.2 for details
about mesh refinements).
(ii)Injection boundary: under (sh, φh, zh), select an injection bound-
ary �inj to enclose the heterogeneity and then identify the injection
elements and the injection GLL points as instructed by Fig. A1; the
selected �inj in Fig. 4 consists of two arcs (top and bottom) and one
line (right), leading to 30 injection elements in total.
(iii)nhet

u for uhy and the cardinal points: determine nhet
u at all the

GLL points on the injection elements using eq. (4); next, locate the
cardinal points associated with these GLL points in (ss, φs, zs); the
maximum nhet

u on �inj occurs at its top-right-hand corner, as labelled
A in the zoomed view; at this point, s ≈ 358 km and vs ≈ 6.5 km s–1,
so the maximum nhet

u is calculated as π×6×358 km
6.5 km/s×10 s ≈ 104.

(iv)Incident simulation: propagate the wave emanating from the
earthquake source upon the background model under (ss, φs, zs),
recording u0 at both the cardinal points and the receivers; this is
a normal AxiSEM3D simulation with its nu(ss, zs) determined by
the background model; for this problem, we simply use a constant
one, nu(ss, zs) = 300, which is much larger than the one obtained
by wavefield scanning on S40RTS (Leng et al. 2019).
(v)Processing u0: perform the coordinate transformation from
u0(s J

s , φ J
s , z J

s ) to u0(sh, φ
J
h , zh) at each cardinal point and then com-

pute the Fourier coefficients uα
0 (sh, zh) from u0(sh, φ

J
h , zh) at each

GLL point by a fast Fourier transform.
(vi)Injection simulation: back into (sh, φh, zh) and following the
workflow in Fig. A2, inject uα

0 (sh, zh) into the perturbed 3-D model
as a volume source over the injection elements, recording uhy or δu
at the receivers; here we use nu(sh, zh) = 404 in the far field (as
nhet

u = 104 and nbm
u = 300).

(vii)Reconstructing u: transform δu(sh, φh, zh) to δu(ss, φs, zs) at
each receiver and reconstruct the total wavefield by u0 + δu.

3.2 Benchmark results

The agreement between SPECFEM and wavefield injection with
AxiSEM3D turns out nearly exact. Among all the three components
at all the receivers, the lowest score of goodness-of-fit is about 9.6
out of 10. Fig. 5 displays the seismograms at a receiver located at
60◦ in epicentral distance and 20◦ in azimuth. It is shown that, for
both u (left-hand column) and δu (middle column), the seismograms
obtained by wavefield injection (dashed red) are basically identical
to those by SPECFEM (solid black).

Let us look into the scattered phases. The selected time window in
Fig. 5 reveals two significant scattered energy packets, sP2S+S2S 2

and ScS2sP. First, the arrival time of S2S is close to that of S because
the heterogeneity is located approximately halfway between the
earthquake and the receiver. Secondly, because the heterogeneity is
strong and large, the amplitude of sP2S+S2S is only one order of
magnitude lower than that of S in the radial and vertical components
(comparing Figs 5a to b and g to h); in the transverse component
(comparing Figs 5d to e), their amplitudes are mostly the same
because there is no incident SH-energy. Finally, the amplitude of

2In this paper, we name a scattered phase as A2B, where A and B are, respec-
tively, the incident and the outgoing phases. Such a ray-based nomenclature
implies Mie scattering, a scattering regime where the structural scale is
smaller than the wavelength (Wu & Aki 1985). Our approach is aimed at
the general scattering regime where the heterogeneity can be much larger
than the wavelength. In this general case, both converted phase names
and traveltimes give inexact descriptions of a scattered wave; still, these
concepts are helpful in understanding the scattered waveforms.
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Figure 4. Spectral element mesh for simulating wave scattering by a spherical heterogeneity in the mid-lower mantle. We use PREM to generate the mesh at
a 10 s period and use S40RTS as the background model for wave propagation. The heterogeneity is located 1200 km in depth and 30◦ in epicentral distance,
with an outer radius of 250 km (≈4λs). Within an inner radius of 200 km, the perturbations to vs, vp and ρ are, respectively, 50, 20 and 10 per cent, which
smoothly decrease to zero at 250 km. This mesh will be used for both the incident simulation under the source-centred coordinate system and the injection
simulation under the heterogeneity-centred coordinate system, with the heterogeneity located, respectively, at 30◦ and on the axis. The left-hand panel zooms
into the dashed box on the right-hand side, highlighting the injection boundary �inj (in thick curves) and the injection elements (in white colour).

Figure 5. Verification by a comparison to a 3-D SEM and the reproduction test. The problem is described in Fig. 4, simulated at a 10 s period. We display the
synthetic seismograms at a receiver located at 60◦ in epicentral distance and 20◦ in azimuth. The three columns from left-hand side to right-hand side show,
respectively, the total wavefield u(t), the scattered wavefield δu(t) and the reproduction error δurep(t) (the computed δu(t) without the small-scale heterogeneity).
The three rows from top to bottom show, respectively, the radial (R), transverse (T) and vertical (Z) components. All the seismograms are normalized by the
amplitude at point A in (a); after such normalization, the amplitude range of each plot is given by ‘amp’ in the title. The scores of goodness-of-fit (GoF)
are calculated for S40RTS, using the waveforms computed, respectively, by SPECFEM3D GLOBE (solid black) and AxiSEM3D-Injection (dashed red). The
traveltimes of the scattered phases are calculated by ray tracing, assuming point scattering at the centre of the heterogeneity.
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ScS2sP is slightly larger than that of sP2S+S2S; this is because the
scattering angle3 of ScS2sP (24.6◦) turns out smaller than those of
sP2S (35.2◦) and S2S (38.8◦), as the receiver is located 20◦ away
from the source-heterogeneity plane. It is noted that three other
scattered phases, S2ScS, ScS2S and sP2ScS, arrive at the receiver
mostly at the same time as ScS2sP does, but we can ascertain that
the energy packet is dominated by ScS2sP because the scattering
angles of the other three are all close to 80◦.

Further, to assess the influence of the 3-D background model, we
replace S40RTS with PREM and repeat the simulations. As shown in
Fig. 5, the waveform differences between using S40RTS and PREM
are small for both S and S2S; this is because they travel mainly in
the mid-lower mantle where S40RTS turns out less heterogeneous
in the source–receiver plane. The differences become larger for
ScS2sP, whose incident branch extends into the lowermost mantle
and encounters some long-wavelength slow anomalies. The largest
differences are found near SS, which travels primarily within the
upper mantle and the transition zone and comes across a strong fast
anomaly near its bounce point. In general, a tomographic mantle
model alters a scattered wave in a smooth manner, the same as it
alters an incident wave. For a global-scale application, whether to
use a 3-D background model depends on various factors such as
the source-heterogeneity-receiver geometry, the scattered phases of
interest and the scattering strength of the small-scale heterogeneity
relative to the background model.

Finally, we compare the computational cost. The all-in-one sim-
ulation with SPECFEM took 1069 CPU-hr (0.55 hr on 1944 cores)
for the 30-min record length (the same for PREM and S40RTS). The
injection simulations with AxiSEM3D took 490 CPU-hr (0.68 hr on
720 cores) and 86 CPU-hr (0.12 hr on 720 cores), respectively, using
S40RTS and PREM as the background model. First, wavefield injec-
tion with AxiSEM3D has acquired a speedup around 12 for PREM.
Such a speedup is fundamental because it is frequency-independent
(recall that both the costs scale with ω4). More significantly, this
speedup will become increasingly attractive as the heterogeneity
shrinks laterally [recall that cinj scales with s in eq. (18)]; for in-
stance, it may reach ∼80 when the maximum s on �inj decreases
to 50 km. Besides, using S40RTS as the background model has
multiplied the computational cost by a factor of 6, which can be
remarkably decreased by using an optimized nbm

u (sh, zh) instead of
the large constant one, nbm

u = 300. However, even we keep using
nbm

u = 300, such a difference will decrease with frequency.

3.3 Reproduction test

A reproduction test is an injection simulation in the absence of the
heterogeneity (Opršal et al. 2009), which is supposed to yield δu =
0 everywhere. However, wavefield injection inevitably introduces
some systematic numerical errors that are generally larger than the
random floating-point errors. These systematic errors, as termed the
reproduction errors, mainly come from the calculation and storage
of u0 near �inj: first, a spatial interpolation is required to bridge the
two different representations (or discretizations) of u0 in the two
stages (e.g. through the cardinal points in AxiSEM3D); secondly,
to cut the storage for u0, a temporal downsampling may become

3A scattering angle is the angle between the incident and the outgoing wave-
vectors. In Mie scattering, the amplitude of a scattered wave decreases with
its scattering angle (Wu & Aki 1985). Similar to converted phase names
and traveltimes, scattering angles also give an inexact description but useful
in analysing the amplitude of a scattered phase.

necessary at a high frequency (e.g. the sampling rate determined by
the simulation time step can reach about 100 for PREM at 1 Hz). A
reproduction test is indispensable to guarantee that the level of these
reproduction errors are safely below that of the scattered wavefield.

As shown in the right-hand column of Fig. 5, the reproduction
errors for our benchmark problem are on the order of magnitude
of 10−5 relative to the incident waves. Such an error level again
verifies our implementation, as we have compiled the solver with
single precision, which has a floating-point error of ∼10−6 (ISO C
standard). Concerning a smaller and weaker heterogeneity, however,
the scattered wave can drop below this floating-point error. To avoid
that, the solver must be compiled with double precision, which has
a floating-point error of ∼10−15 (ISO C standard); a scattered wave
below this error level is totally undetectable.

4 C O M PA R I S O N W I T H A P P ROX I M AT E
S O LU T I O N S

This section delivers a high-frequency application of our approach.
As reviewed in the introduction, two approximations have been
playing a fundamental role in seismological investigations of mantle
heterogeneities, the perturbation theory and 2-D in-plane modelling.
In this section, we compare these two approximate solutions with
the exact solution obtained by wavefield injection with AxiSEM3D.

4.1 Perturbation theory

Similar to wavefield injection, the perturbation theory starts from
solving the incident wavefield u0 associated with a background
model (ρ0, C0), as governed by eq. (8). It then aims at establish-
ing an explicit relation between the wavefield perturbation δu and
the model perturbations (δρ, δC) in the neighbourhood of u0 and
(ρ0, C0).

Subtracting eq. (8) from (1) and applying eq. (11) to the result,
one can obtain a weak form of the scattered wavefield δu:∫

�

(
ρ0∂

2
t δu · w + ∇δu : C0 : ∇w

)
dr3

= −
∫

H

(
δρ∂2

t δu · w + ∇δu : δC : ∇w
)

dr3

−
∫

H

(
δρ∂2

t u0 · w + ∇u0 : δC : ∇w
)

dr3, (19)

where the model perturbations, δρ = ρ − ρ0 and δC = C − C0,
vanish outside the heterogeneity H. The above weak from, along
with its equivalent formulations such as its strong form (Hudson &
Heritage 1981) or representation theorem (Dalkolmo & Friederich
2000), has usually been used as the starting point to establish a
perturbation theory. Such a weak form exhibits two differences
from the original one in eq. (1): on the left-hand side, the wave
operator in � is determined by the background model instead of the
perturbed one and, on the right-hand side, two volume sources over
H replace the moment tensor. Despite such apparent differences, it
does not simplify the solution because δu appears on both its left-
and right-hand sides.

If the scattering strength of the heterogeneity is so weak that
|δu| 
 |u0| in H, we can make eq. (19) explicit by ignoring the first
volume integral on its right-hand side:∫

�

(
ρ0∂

2
t δu · w + ∇δu : C0 : ∇w

)
dr3

≈ −
∫

H

(
δρ∂2

t u0 · w + ∇u0 : δC : ∇w
)

dr3. (20)
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Figure 6. Error of the Born approximation as a function of perturbation
strength, structure-wavelength ratio and scattering angle (ϑ). We show the
errors for P2P scattering based on the analytical solution of Ying & Tru-
ell (1956), assuming a spherical inclusion in an unbounded homogeneous
isotropic medium (vp = 10 km s–1, vs = 5 km s–1, ρ = 4 kg m–3). These er-
rors are calculated by |(�Born − �exact)/�exact|, where � is a scalar potential
such that the scattered P-wave in the far field is determined by δu = −∇�

[see eq. (10) of Ying & Truell 1956]. Similar patterns can be shown for P2S,
S2P and S2S. The limit d/λp = 0 stands for Rayleigh scattering and d/λp ≤
1 for Mie scattering.

This is commonly known as the Born approximation. The solution
now becomes straightforward because the model perturbations no
longer appear in the wave operator; instead, they contribute only
through the source: a vector force field δρ∂2

t u0 and a moment ten-
sor field ∇u0 : δC. Most remarkably, it establishes a linear relation
between δu and (δρ, δC) so that each perturbed point in H con-
tributes independently to the scattered wavefield by means of a sim-
ple superposition. Such linearity has laid the cornerstone of many
inverse techniques such as finite-frequency tomography (Dahlen
et al. 2000), the random media theory (Shearer 2015), stacking and
migration (Rost & Thomas 2002) and each update in gradient-based
full-waveform inversion (e.g. Tape et al. 2009; Bozdağ et al. 2016).

The Born approximation can be accurate only if the heterogeneity
is sufficiently small and weak. An comprehensive theoretical study
has been carried out by Hudson & Heritage (1981). Here we assess
its accuracy based on the exact solution of Ying & Truell (1956) for
P2P scattering by a spherical heterogeneity in an unbounded homo-
geneous isotropic medium. A similar assessment can be found in
Korneev & Johnson (1993), but our results will be more compact
and readable. Fig. 6 shows the error of the Born approximation as a
function of the perturbation strength (−50% ≤ δvp ≤ 50 per cent),
the structure-wavelength ratio (0 ≤ d/λp ≤ 5) and the scattering an-
gle (0◦ ≤ ϑ ≤ 90◦). Such a parameter space should be able to cover
all known kinds of heterogeneities in the Earth’s mantle. The pat-
terns shown in Fig. 6 reveal three remarkable characteristics. First,
given a weak perturbation (e.g. |δvp| < 5 per cent), the accuracy can
remain relatively high even the diameter has grown considerably
larger than the wavelength; this result supports the utilization of
sensitivity kernels in global tomography for inverting large-scale
mantle structures. On the contrary, a strong perturbation (e.g. |δvp|

> 20 per cent) will lead to a persistently large error even at the
limit of Rayleigh scattering by an infinitesimal scatterer (d/λp = 0);
therefore, the Born approximation is inadequate for a strong mantle
heterogeneity such as a ULVZ; only within the regime of Mie scat-
tering (d/λp ≤ 1), the long-wave approximation (Gubernatis 1979)
can be applied to correct the Born solution for an arbitrarily strong
perturbation strength. Finally, a non-zero scattering angle can make
the pattern highly oscillating, as dominated by a series of singular
points along the axis of δvp = 0.

With such an overall pattern of error in mind, we now examine
the waveform differences between the Born and the exact solutions.
We continue with the benchmark problem described in Section 3.1,
decreasing the radius of the heterogeneity to 30 km and increasing
the frequency to 1 Hz. Such a size and frequency give rise to a
structure-S-wavelength ratio greater than 9 (≈ 30 km×2

6.5 km/s×1 s ), so the
heterogeneity is ‘large’ in the sense of wavelength. We keep using
the strong velocity perturbations, that is, δvs = 50 per cent and δvp

= 20 per cent, but no longer adopt a smeared outer boundary. In
short, the heterogeneity is both strong and large, with complex
scattering phenomena all along its sharp boundary. Note that we do
not use another independent method to compute the Born solution;
instead, we compute the two exact solutions, respectively, for δλ

= 1 per cent and δμ = 1 per cent by wavefield injection; these two
‘unit’ solutions can be scaled by any desired perturbation strength
based on the linearity of eq. (20). Besides, we let δρ = 0 to apply the
long-wave approximation by Gubernatis (1979). The narrowest �inj

in the mesh to enclose the heterogeneity has a maximum s around
34 km, filling the far field with nhet

u = 99 [≈ π×6×34 km
6.5 km/s×1 s , eq. (4)]

and leading to a measured computational cost of 71270 CPU-hr
(11.60 hr on 6144 cores) for a 30-min record length.

Fig. 7 shows the scattered waveforms at the same receiver as in
Fig. 5, located at 60◦ in epicentral distance and 20◦ in azimuth.
On the top, we show a half-hour time window where we manage
to identify most of the scattered phases. Below that, we zoom into
three narrow windows, varying the perturbation strength and the
frequency. Each column shares the same time window and each row
the same perturbation strength and frequency. Below we analyse the
waveform differences based on the zoomed windows:

(i)Strong and large heterogeneity: the first row shows the waveforms
obtained with δvs = 50 per cent at 1 Hz. The Born approximation
basically fails for such a strong and large heterogeneity. Clearly, the
Born solution exhibits more individual scattered phases than the ex-
act solution does, such as the two separated S2P phases in Fig. 7(a);
this is understandable because different parts of the heterogeneity
behave as independent scatterers in the Born approximation.
(ii)Weak and large heterogeneity: in the second row, we re-
duce δvs to 5 per cent and, as expected, the waveform differ-
ences significantly decrease. Still, such differences are visible be-
cause the heterogeneity is one order of magnitude larger than the
wavelength.
(iii)Strong and small heterogeneity: in the last row, we filter the
waveforms in the first row with a low-pass at 10 s, so the size of
heterogeneity becomes slightly smaller than the wavelength. Even
so, the Born approximation still cannot correctly predict the ampli-
tudes of the scattered waveforms because of the strong perturbation
strength. Such amplitude differences can be well corrected by the
long-wave approximation by Gubernatis (1979). Such a correction
can be briefly summarized into three steps: first, in the incident
simulation, we store the strain at the centre of the heterogeneity,
as denoted e0 by Gubernatis (1979) (it would be e0 in our nota-
tion); next, we use his eq. (4.4) and (4.10) to compute the Eshelby’s
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Figure 7. Waveform comparisons between 3-D modelling and the perturbation theory. The problem is same as described in Fig. 4 except that the heterogeneity
has a 30 km radius (with sharp boundary) and a vanished δρ and that the dominant frequency is 1 Hz. The full-length waveform on the top shows the
transverse component of the scattered displacement at a receiver located at 60◦ in epicentral distance and 20◦ in azimuth. Three time windows are magnified
below, as labelled TW-1 (left-hand column), TW-2 (middle column) and TW-3 (right-hand column). The three rows from top to bottom show, respectively,
the comparisons for δvs = 50 per cent at 1 Hz, δvs = 5 per cent at 1 Hz and δvs = 50 per cent at 0.1 Hz. The waveforms labelled ‘Long-wave’ are obtained by
correcting the Born solutions using the long-wave approximation by Gubernatis (1979). The traveltimes of the scattered phases are calculated by ray tracing,
assuming point scattering at the centre of the heterogeneity.

eigenstrain εσ at the static limit; finally, in view of the difference
between his eq. (3.8) and (3.11) and that δρ = 0, the Born wave-
forms can be corrected by a scaling matrix (δC : e0)−1 · (δC : εσ )
in the frequency domain.

4.2 2-D in-plane modelling

Different from the perturbation theory, the 2-D in-plane approxima-
tion reduces the dimensionality of the model while preserving the
wave scattering physics. By confining structural variations within
the source–receiver plane, it prescribes model axisymmetry about
the source and thereby substantially change the computability at
high frequencies. Taking a global-scale problem at 1 Hz for ex-
ample, 2-D in-plane modelling (e.g. with AxiSEM, Nissen-Meyer
et al. 2014) can lead to a speedup of 4–5 orders of magnitude with
respect to full 3-D modelling. Because of such efficiency, it has

been frequently used in recent forward studies of small-scale man-
tle heterogeneities (e.g. Rondenay et al. 2010; Thorne et al. 2013;
Vanacore et al. 2016; Haugland et al. 2017).

We work on the same problem as described in Section 4.1. In
axisymmetric modelling, this heterogeneity becomes a 3-D torus
with a 2585.5 km major radius (i.e. the distance from its centre to
the axis) and a 30 km minor radius. The waveforms modelled in
2-D and 3-D are compared on two record sections, one within and
the other orthogonal to the source-heterogeneity plane.

We first examine the in-plane record section, as shown in Fig. 8(a).
The 2-D simulation correctly predicts most of the scattered phases,
but the amplitudes turn out much larger, especially for the distant
receivers (note that the amplitudes of the 3-D waveforms are scaled
by a factor of three). These large amplitude differences result from
the fact that the lateral dimension of the sphere is much smaller
than that of the torus. Therefore, when using the amplitudes of
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Figure 8. Waveform comparisons between 3-D modelling and 2-D in-plane modelling. The problem is the same as in Fig. 7 (δvs = 50 per cent at 1 Hz) except
that the spherical heterogeneity becomes a torus in 2-D. We show the vertical component of the scattered displacement on two record sections: (a) the in-plane
record section (φ = 0◦) and (b) an off-plane record section with θ = 60◦. The seismograms are aligned at the incident S-wave (or Sdiff for some distant
receivers). In both (a) and (b), the amplitudes of the 3-D waveforms are multiplied by a factor of 3 for visualization purpose. In (b), two additional corrections
are applied: first, the 2-D waveforms are shifted by the difference between the two S2S traveltimes, respectively, in 3-D and 2-D (otherwise they will look
exactly the same at all the azimuths) and, secondly, the amplitudes of the 3-D waveforms are scaled by another two factors to further account for the differences
in geometric spreading and scattering angle. The traveltimes of the scattered phases are calculated by ray tracing, assuming point scattering at the centre of the
heterogeneity.

scattered waveforms modelled in 2-D to constrain the perturbation
strength of a heterogeneity, one must be aware of the geometric
discrepancy introduced by the in-plane assumption. For instance,
such discrepancy can be small for a subducted slab (Haugland et al.
2017) but rather large for a ULVZ (Vanacore et al. 2016) or a plume
(Maguire et al. 2016).

Now we move on to the off-plane record section located at θ =
60◦, as shown in Fig. 8(a). Here we focus on the S2S phase. A direct
comparison will be silly because the 2-D waveforms do not change
with azimuth (note that we use an axisymmetric moment tensor). To
make the comparison more meaningful, we first attempt to correct
for the path difference of S2S in 2-D and 3-D modelling based on
the ray theory: first, we delay the 2-D waveforms by the differential
traveltimes of S2S (t3-D − t2-D); secondly, in addition to a constant
factor of three, we scale the 3-D waveforms by two more factors,
one for geometric spreading (based on the distance from hetero-
geneity to receiver) and the other for the scattering angle [based
on the ‘shape factor’ given by eq. (4.8) in Gubernatis (1979) or
eq. (38) in Wu & Aki (1985)]. Despite such ray-based corrections,
the waveform differences between 2-D and 3-D modelling still in-
crease rapidly with azimuth: the two waveforms become mostly
uncorrelated after φ = 8◦. Indeed, the S2S phase contains two sub-
phases, travelling, respectively, as P and S within the heterogeneity.
In 3-D, these two subphases take off at different locations on the
surface of heterogeneity and such a difference increases with the
azimuth. After φ = 20◦, these two subphases start to arrive sepa-
rately, forming an apparent precursor of the ray-based S2S phase,
as marked in Fig. 8(a).

Consequently, we can infer from this numerical example that, for
a heterogeneity with a small lateral extent, the only robust mea-
surement one can directly take from 2-D in-plane modelling is the
phase information at a receiver within or sufficiently close to the
source-heterogeneity plane.

5 A N A P P L I C AT I O N T O A U LV Z

In this section, we carry out a 3-D study of a ULVZ at a 1 Hz domi-
nant frequency. We adopt an earthquake source located in northern
Chile and compute the seismograms across the USArray. The ULVZ
is located off the east coast of Costa Rica, roughly halfway between
the epicentre and the geographic centre of the United States. It is
15 km in height and 60 km in radius and with a strong 50 per cent
shear velocity reduction. The problem is detailed in Fig. 9.

We incorporate Crust 1.0 (Laske et al. 2013) underneath the US-
Array to investigate the crustal effects on the ULVZ phases. This
3-D crustal model has a 1◦ × 1◦ horizontal resolution and includes
up to six vertical layers from the surface to the Moho (three for
sediment and three for crystalline crust). It also includes topog-
raphy on both the surface and the Moho: the undulation on the
Moho comes mostly in the opposite direction of that on the sur-
face and can be two to three times larger than that on the surface.
Wave scattering by the ULVZ is modelled by wavefield injection
while Crust 1.0 is incorporated as part of the background model.
Similar to SPECFEM3D GLOBE, we exactly honour the topog-
raphy on both the surface and the Moho by stretching the spectral
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Figure 9. A 3-D forward study of a ULVZ. The epicentre is located at
20.02◦S, 69.23◦W and 94.5 km in depth (200506132244A, northern Chile).
The seismic array contains 1843 stations from the transportable virtual
network ‘ US-TA’ of the USArray. We incorporate 3-D crustal structures
(Crust 1.0; Laske et al. 2013) underneath the array. The ULVZ has a cylindri-
cal shape with a height of 15 km and a radius of 60 km, located at 10.11◦N,
82.34◦W above the CMB. Within the ULVZ, the S- and P-velocities are
reduced, respectively, by 50 and 20 per cent and the density increased by
10 per cent. The spectral element mesh is generated based on PREM (no
crust) at a 1 Hz frequency, with the lowermost mantle refined to accom-
modate the 50 per cent S-velocity reduction. The boundary of the ULVZ is
exactly honoured by the mesh. The elements coloured in red form the ULVZ
and those in white are the injection elements.

element mesh (by means of the particle relabelling transformation in
AxiSEM3D, Leng et al. 2019) while leaving the intermediate layer
boundaries cutting through the elements. Note that we do not include
any crustal structure on the source side to isolate the receiver-side
effects. Besides, we need a reference solution for PREM without
Crust 1.0; in this solution, we also remove the two 1-D crustal layers
in PREM (by extending the top of the mantle to the surface) so as
to exclude all crustal effects.

Because δvs = −50 per cent, the mesh generated based on PREM
must be doubled in the lowermost 15 km of the mantle; in other
words, the highest dominant frequency actually reaches 2 Hz for
PREM-based mesh generation. To keep the mesh conformal, such
refinement will be extended globally in the horizontal (θ ) direction
and to the mid-lower mantle in the vertical (r) direction, leading to
Chet ≈ 1.3 in eq. (18). Note that our mesh fully honours the boundary
of the ULVZ, including its top, bottom and side faces. The narrowest
�inj in the mesh to enclose the ULVZ has a maximum s around 62 km
(see the injection elements coloured in white in Fig. 9) and vs ≈
7.3 km s–1 on the CMB, leading to nhet

u = 160 [≈ π×6×62 km
7.3 km/s×1 s , eq. (4)]

in the far field. Within the 3-D crust, we use nbm
u = 1500 (Leng et al.

2019), which means nu = nhet
u + nbm

u = 1660.
Using PREM as the background model, the measured compu-

tational cost is 152,712 CPU-hr (21.21 hr on 7200 cores) for a
30-min record length, which increases to 188,352 CPU-hr (19.62 hr
on 9600 cores) after adding Crust 1.0. Because the farthest receiver
is about 52◦ away from the ULVZ, these measured costs can be
reduced by 2/3 simply with a truncated computational domain at
θ = 60◦.

5.1 Scattering by the ULVZ

We first investigate the scattering process in the near field of the
ULVZ. Fig. 10 shows a series of 3-D wavefield snapshots in the near

field since the S-wave incidence, animating the radial component
of the total displacement. These snapshots can be better understood
with the help of the supplemented animation. Let us start with the
incident waves. At 590 s, a moment when the S wave front nearly
touches the ULVZ, Fig. 10(a) displays a Y-shaped pattern composed
of three continuous wave fronts: S, ScS and SK (note that ScP does
not exist at this distance); in Fig. 10(b), S and ScS form the two
parallel wave fronts in the ‘TOP’ cross section, which merge into
one on the CMB. The complete scattering process can be roughly
divided into the following three stages:

(i)The wave-trapping stage — after the incidence (590 s) and be-
fore the S wave front approaches the rear corner of the ULVZ
(608 s), the scattering is dominated by the top and the bottom
faces. The incident S wave is first reflected and refracted by the
top face; the down-going refracted waves then encounter the CMB
where part of the energy is transmitted to the outer core and the
rest reflected back to the top face; such top-bottom reflections
and refractions (accompanied by a deflection along the circular
side face) repeat until the S wave front approaches the rear cor-
ner. In short, the ULVZ behaves as a ‘leaking’ wave trap in this
stage.
(ii)The point-source stage — the circular side face starts to dominate
as the S wave front enters the rear quarter of the ULVZ. It focuses
the trapped waves at the rear corner where they eventually escape
from the ULVZ; in other words, the rear corner of the ULVZ emits
the trapped energy to the far field as a point source. We track two
phases on the CMB in Fig. 10(b), as marked, respectively, by B©
and C©: a comparison between 602 and 608 s clearly exhibits the
focusing of these two phases, whereas, at 614 s, B© has escaped
from the rear corner and C© has been mostly focused and ready
to escape; dissimilar to A©, both B© and C© are highly irregular
after the takeoff, as shown in Fig. 10(a) at 620 s, caused by the
extraordinarily strong 3-D effects around the rear corner (see the
supplemented animation);
(iii)The back-propagation stage — while most of the trapped energy
escapes from the ULVZ at its rear corner, the rest reflected back to
the ULVZ continues to propagate towards its front corner. Once
again, such back-propagation is dominated first by the top and the
bottom faces as a wave trap and then by the front corner as a point
source. The back-propagation can hardly be perceived from Fig. 10
but is visible in the supplemented animation. This stage seems less
significant for probing a ULVZ because the back-scattered energy
may be too small to be observed on the Earth’s surface; still, it
might suggest a hunt for such small energy by some array methods
(Rost & Thomas 2002).

Next, we analyse the scattered waveforms computed for the
USArray, as shown in Fig. 11. The time window in Fig. 11(a) is
dominated by two outstanding phase clusters: (P+pP+sP)2S and
(S+pS+sS)2S. The phases within the two clusters maintain the
same moveout (i.e. their stacking patterns are parallel to one an-
other), as their traveltime differences only come from the incident
branch. We zoom into the second cluster in Fig. 11(b), where the
three scattered phases become distinguishable: S2S, pS2S and sS2S
(the incidence of pS and sS are annotated in Fig. 10a at 620 s). The
S2S phase consists of four subphases at a shorter distance, as marked
by 1© to 4© in Fig. 11(b), which correspond to the four wave fronts
departing from the top face of the ULVZ during the wave-trapping
stage, as marked by A© in Fig. 10 at 608 s. As the distance increases,
these four subphases gradually merge because of the transition of
scattering regime from wave-trapping to point-source. Though we
know that a subphase observed at a longer distance originates from
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Wave scattering by small-scale heterogeneity 517

Figure 10. Wavefield snapshots around a ULVZ since the incidence of S wave. The problem is described in Fig. 9, simulated at a 1 Hz dominant frequency.
In (a), we show the in-plane vertical cross-section determined by the epicentre and the ULVZ centre. In (b), we show two horizontal cross-sections centred at
the ULVZ, one on the CMB (upper semicircle) and the other on the top of the ULVZ (lower semicircle). The radial component of the total displacement is
visualized, which is discontinuous on the CMB (because the CMB is a solid–fluid discontinuity). The wave fronts marked A©, B© and C© will examined in the
text. The complete animation can be found in the supplementary materials.

the rear corner of the ULVZ, it is difficult to exactly identify their
origin in the near-field snapshots because the wave fronts emanat-
ing from the rear corner are highly irregular, such as B© and C© in
Fig. 10.

In general, the scattering process in the near field is highly sensi-
tive to the location and geometry of a ULVZ. Varying the location
and geometry, in turn, can lead to distinct waveform patterns in
the far field, which usually involves generation and suppression
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Figure 11. Synthetic scattered waveforms originating from a ULVZ and computed for the USArray. The problem is described in Fig. 9, simulated at a 1 Hz
dominant frequency. We show the radial component of the scattered displacement. The broad time window in (a) contains many scattered phases, among
which the largest two clusters are (P+pP+sP)2S and (S+pS+sS)2S. The window of (S+pS+sS)2S is magnified in (b) and (c), respectively, without and with
Crust 1.0. The strong coda near 55◦ in (c) are caused by the thin and slow sediment layers in Crust 1.0; such strong coda also appear at some other distances,
and we only highlight one. The same amplitude scale is used across this figure. The traveltimes of the scattered phases are calculated by ray tracing, assuming
point scattering at the centre of the ULVZ.

of scattered phases. A profound understanding of such non-linear
scattering effects (such as above) should be fundamental to data
interpretation and utilization, for which high-frequency 3-D mod-
elling is the best approach (or probably the only approach under
certain scenarios). A parameter study for a 3-D ULVZ is beyond the
scope of this paper and left to a future one.

5.2 Effects of 3-D crust

Now we investigate the 3-D crustal effects. Fig. 11(c) shows the
waveforms of (S+pS+sS)2S, the same as Fig. 11(b) but with
Crust 1.0. There are primarily three crustal effects. First and
foremost, the waveform patterns of the ULVZ phases are basically
preserved, but they are notably delayed and amplified by the slow
crustal layers, especially by the sediment layers. Secondly, strong
coda are generated at some of the stations, mostly located in the
sedimentary basins, whose amplitudes are similar to those of the
ULVZ phases. Finally, quite a few Moho phases are generated;
however, they are less likely to be observed in data because of their
small amplitudes (note that the ULVZ phases are already much
smaller than the main phases).

By cross-correlating the waveforms in Figs 11(b) and (c), we can
quantify the traveltime delay caused by Crust 1.0 at each station.
For the S2S window, such delays are mapped in Fig. 12(a), which
exhibits some of the large-scale geological features of the United
States. Using such modelling results, we can evaluate the accuracy
of the ray-based traveltime correction, a common practice in seismic
tomography (chap. 13, Nolet 2008). Fig. 12(b) shows the map ob-
tained by ray tracing in Crust 1.0; this map complies with Fig. 12(a)
in many regions, especially in the sedimentary basins (e.g. those in
California, Louisiana and Florida), but significantly overestimates
the delay around the Rocky Mountains. As shown in Fig. 12(c), such
large errors in the mountains can be well remedied by ignoring the
sediment layers in Crust 1.0; however, doing so will overturn the
accuracy in the sedimentary basins. Combining Figs 12(b) and (c),
we figure out that the discrepancy between waveform modelling and
ray tracing stems from the sediment layers thinner than the wave-
length; these layers will be poorly sampled by the spectral element
mesh and thus cannot effectively alter the waveforms. By ignoring
these subwavelength layers in Crust 1.0, we manage to render ray
tracing consistent with waveform modelling, as shown in Fig. 12(d).
This example justifies the necessity of considering finite-frequency
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Figure 12. Traveltime delays of S2S phases caused by Crust 1.0. In (a), the delays are obtained by cross-correlating the synthetic waveforms in Fig. 11(c)
against those in Fig. 11(b), taking a time window between ±10 s. From (b) to (d), the delays are calculated by 1-D ray tracing in PREM with Crust 1.0 (using
the vertical profile beneath the station as a global 1-D crust). In (b), all the layers in Crust 1.0 are incorporated, including up to three sediment layers. We
exclude all the sediment layers in (c) and those thinner than one wavelength in (d). We compare the delays in (b)–(d) with those in (a) and denote the difference
by �terr; the maximal and average �terr over all the stations are indicated.

effects when correcting traveltimes for crustal structures (Dahlen
2005).

5.3 Imaging by migration

As the final part of this case study, we use our synthetic waveforms
to image the ULVZ based on a simple migration algorithm. We
use the scattered waveforms computed with Crust 1.0, as shown in
Fig. 11(c), and assume S2S to be the only scattering mechanism. It
means that any wiggles outside the S2S window (around the origin
in Fig. 11c) will behave as noise, including the other ULVZ phases
(such as pS2S) and the crustal phases and coda. Given any target
point rm in the mantle, we compute its migration energy E(rm) by

E(rm) =
N∑

k=1

∫ T

−T
|δu(rk

r ; trs→rm + trm→rk
r
+ t)|2 dt, (21)

where N denote the number of stations in the array, rk
r the location

of the kth station, tr1→r2 an operator that computes the S-wave trav-
eltime between r1 and r2 and T the dominant period of the scattered
waveforms. The above equation should be the simplest algorithm
to create a migration image: it first calculates the theoretical travel-
times of S2S, that is, trs→rm + trm→rk

r
for all rm and rk

r , and then the
L2 norms of the waveforms within a window [ − T, T] centred at
S2S (using a boxcar window function). The only variable in eq. (21)

is the period T, for which we test 5, 2 and 1 s; a low-pass filter at T
is first applied to the synthetic data.

The results are shown in Fig. 13. The obtained image converges
to the real location and geometry of the ULVZ as the frequency in-
creases. In particular, a hollow structure has been formed when T =
1 s, which means that migration has started to resolve the structural
details at such a period. In view of that our migration algorithm
simply assumes Rayleigh scattering (even less realistic than Born
scattering), such a result looks satisfactory. The images also dis-
play strong path effects (essentially the isochronal artefacts, Kito &
Korenaga 2010), that is, they are stretched along the ray paths in
the in-plane cross-section. Migration with real data is much more
challenging than with synthetic data and requires more sophisti-
cated data processing; for example, the low signal-to-noise ratio of
global seismic data may necessitate a non-linear stacking algorithm
(e.g. Rost & Thomas 2002; Korenaga 2013) and stochastic test of
reproducibility (Korenaga 2015).

6 D I S C U S S I O N S

We develop a new approach to simulate 3-D wave propagation in the
presence of a strong, localized heterogeneity in the Earth’s mantle
at a high frequency. Distinct from approximate methods such as the
perturbation theory, our approach preserves the full physics of wave
scattering and delivers the exact elastodynamic wavefield originated
from the heterogeneity. It is built upon two constituents: a 3-D wave
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Figure 13. ULVZ geometry imaged by migration. We use the scattered waveforms in Fig. 11c, computed with Crust 1.0 and corrected using the traveltime
delays in Fig. 12d. We test three low-pass filters, respectively, down to 5, 2 and 1 s. For migration, we assume S2S-scattering but do not mask any other
scattered phases (including crustal phases and coda). The obtained images for the in-plane cross-section are shown in (a) and those for the orthogonal off-plane
cross-section in (b). The small box indicates the real ULVZ boundary (note that the vertical axis is stretched) and the spot within the box the centroid of the
ULVZ yielded by migration.

propagator called AxiSEM3D and a cross-scale technique known as
wavefield injection. Given a background model, wavefield injection
can realize the exact decomposition of the total wavefield into an
incident and a scattered part, that is, u = u0 + δu, which can be
solved with two sequential simulations. Such a decomposition is
significant in the scenario of deep Earth scattering because both u0

and δu are physically quasi-axisymmetric, that is, they have limited
azimuthal variability, respectively, about the earthquake source and
the small-scale heterogeneity. With adaptability to the azimuthal
complexity of a wavefield, AxiSEM3D can efficiently solve u0 and
δu under the two different coordinate systems. For a simple and flex-
ible implementation in SEM, we design a new traction-free scheme
that is (i) purely displacement-based, (ii) agnostic to the geometry
of the injection boundary and (iii) encapsulated in the computation
of the stiffness forces. Based on this scheme, we implement wave-
field injection in AxiSEM3D and verify our implementation with a
comprehensive, nearly error-free benchmark solution against a full
3-D SEM.

Our approach is more than another implementation of wavefield
injection with some different solver. It follows a unique, physics-
driven strategy where the adaptability of AxiSEM3D plays the lead-
ing role—an apparent sign is that it uses the same solver for both u0

and δu. As a distinguishing feature, it allows for a 3-D background
model (while remaining at a high frequency), such as a tomographic
mantle or crustal model, preserving any far-field propagation ef-
fects such as attenuation and full anisotropy (Tesoniero et al. 2020).
Further, because it does not require the third stage of wavefield
extrapolation (see Section 6.1 for further discussions) and thus a
domain truncation around the injection boundary, it yields the exact
solution (i.e. identical to the all-in-one solution) without ignoring
any higher-order interactions between the interior and the exterior
of the injection boundary.

On top of these features, the major appeal of our approach lies in
its computational efficiency. A 1 Hz dominant frequency is readily
achievable for a global-scale problem with strong deep Earth scat-
tering using modern HPC (on an order of magnitude of 105 CPU-hr).

Such efficiency stems from the quasi-axisymmetry of the scattered
wavefield, embodied in AxiSEM3D through a Fourier expansion
order field or nu(s, z) that is limited by the small lateral size of the
heterogeneity. Given a 3-D heterogeneity in a 1-D background Earth
model, nu(s, z) can be determined by eq. (17), whose computational
cost is given by eq. (18). Such a computational cost scales with
the lateral size of the heterogeneity (e.g. the cost is the same for
a ULVZ and a deep-rooted plume with the same lateral size). For
a 100 km heterogeneity within PREM, our measurements reveal a
speedup of two orders of magnitude with respect to a convectional
3-D SEM; such a speedup is frequency-independent and inversely
proportional to the lateral size of the heterogeneity. eq. (17) is an
upper bound of nu(s, z) that guarantees an exact wavefield solution
throughout the Earth’s interior, so our cost measurements repre-
sent the highest end. Using a 3-D background model increases the
computational cost to different extents, normally within an order
of magnitude unless the heterogeneity is exceedingly small. At the
low- and high-frequency ends, the computational cost is dominated,
respectively, by the background model and the heterogeneity.

Two global-scale numerical experiments are conducted at 1 Hz. In
the first one, we consider a spherical heterogeneity in the mid-lower
mantle to evaluate two types of approximate solutions. We show
that the Born approximation cannot deliver correct waveforms for a
strong and large (measured in wavelength) heterogeneity, whereas
its non-linear extension can correct the waveforms for a strong
perturbation strength but available only for a subwavelength hetero-
geneity. We also show that, if the heterogeneity has a small lateral
extent, the only robust measurement that can be taken from 2-D
in-plane modelling is the phase information at a receiver within or
sufficiently close to the source-heterogeneity plane. In the second
experiment, we study a 3-D ULVZ, incorporating 3-D crustal struc-
tures on the receiver side as part of the background model. We zoom
into the scattering process in the near field, through which the origin
of each scattered phase is identified. Concerning 3-D crustal struc-
tures, a comparison between our modelling results and ray tracing
suggests that the finite-frequency effects should be considered in
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the crustal correction of traveltimes, particularly in the presence of
thin sediment layers.

6.1 Wavefield extrapolation

In global seismology, many previous implementations of wavefield
injection have adopted a global solver that can only take in a spher-
ically symmetric or 1-D background model (e.g. Monteiller et al.
2012; Tong et al. 2014a; Pienkowska-Cote et al. forthcoming) for
the sake of computability at a high frequency. As indicated by
eq. (14), the hybrid wavefield uhy must be solved within the per-
turbed 3-D model, which cannot be accomplished by a 1-D global
solver. Previous studies of this kind have had to introduce a third
stage known as ‘wavefield extrapolation’ (Masson et al. 2013; Mas-
son & Romanowicz 2016). In this case, the second stage will be
conducted within a 3-D domain truncated by an absorbing bound-
ary �abs enclosing �inj, using a comprehensive 3-D local solver.
Next, in the third stage, the recorded δu and δt on �inj will be
‘extrapolated’ within the background model to obtain δu at any far-
field receivers using the 1-D global solver. The theory for wavefield
extrapolation is perfectly reciprocal to that for wavefield injection in
terms of a role-reversal between the background and the perturbed
model.

Notwithstanding the 1-D simplification, the results of wavefield
extrapolation still become inexact because �abs (even if it is a per-
fectly matched layer) blocks off any interactive scattering effects
between the heterogeneity and the background model. Such higher-
order interaction could become notable when a strong heterogeneity
is located close to a major radial discontinuity of the background
model, such as the Moho and the CMB. As a remedy, this �abs

can be replaced by an exact boundary condition (van Manen et al.
2007; Masson & Romanowicz 2017), technically accessible for a
1-D background model. The overall performance can be remark-
ably improved because of the truncated 3-D domain and the high
efficiency of the 1-D global solver, particularly attractive for local-
scale inversion with consideration for global-scale propagation ef-
fects (Masson & Romanowicz 2017; Clouzet et al. 2018). Further,
global wave propagation (in the first and the third stages) can be
replaced with a precomputed database of the Green’s functions, for
example Pienkowska-Cote et al. (forthcoming) using Instaseis (van
Driel et al. 2015) as the database; a precomputed database can be
more efficient than wave propagation if the number of receivers
is not exceedingly large. In this three-stage workflow, AxiSEM3D
can be used as either the global or the local solver. Serving as the
local solver, AxiSEM3D will be significantly more efficient than a
conventional 3-D solver if the small-scale heterogeneity is axisym-
metric by itself, as commonly encountered in the study of a ULVZ
or a plume.

6.2 Heterogeneity on source or receiver side

The above three-stage workflow will reduce to a two-stage one if
the heterogeneity is located near the source (rs ∈ H ) or beneath
the receivers (rs ∈ H ), as the first stage will disappear in the former
case and the third in the latter. Though this paper is aimed for small-
scale heterogeneities in the mantle, our implementation naturally
encompasses these two special cases. In our approach, 3-D crustal
structures can be either incorporated as part of the background
model or handled as a local heterogeneity by wavefield injection.
The choice mainly depends on the resolution and scale of the crustal
model. For instance, one may include Crust 1.0 as the background

model and impose a high-resolution regional model on the source
or the receiver side as a local heterogeneity.
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A P P E N D I X A : A T R A C T I O N - F R E E
S C H E M E F O R S E M

In this appendix, we establish our traction-free scheme for the im-
plementation of wavefield injection in any 2-D or 3-D SEM. For
simplicity, we describe our scheme based on a 2-D spectral element
mesh, as shown in Fig. A1. The scheme works exactly the same
way in 3-D. Given an injection boundary �inj composed of several
element edges (or faces in 3-D), we can categorize the elements into
the following three types:

(i)Exterior elements — those outside �inj, filling �F and determined
by the background model.
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Figure A1. Implementation of wavefield injection in SEM. This illustrative
2-D mesh is designed for the solution of uhy in the second stage. It has a
polynomial order of four, so each spectral element has (4 + 1)2 GLL points.
Given the injection boundary �inj, we divide the spectral elements into three
types: the exterior elements outside �inj, the injection elements inside and
adjacent to �inj and the interior elements inside and non-adjacent to �inj. A
GLL point on �inj is referred to as an injection GLL point. In AxiSEM3D,
�inj is normally an open curve with both its endpoints located on the axis,
which generates a closed 3-D surface after being revolved around the axis;
in this example, �inj forms the meridian of a 3-D cylinder. The right-hand
panel zooms into the dashed box on the left.

(ii)Interior elements — those inside and non-adjacent to �inj, filling
an inner part of �N; arbitrary geometric and material perturbations
can be imposed on these elements.
(iii)Injection elements — those inside and adjacent to �inj, filling an
outer part of �N that forms a ‘thickened’ or ‘smeared’ injection layer
between �N and �F; we prohibit the heterogeneity from extending
to this layer.

Further, we refer to a GLL point on �inj as an injection GLL
point, which must be connected to by at least one injection and one
exterior element.

Given such a mesh layout, one displacement-based scheme natu-
rally emerges: instead of having both u0 and σ0 recorded on �inj, we
may only record u0 on all the GLL points of the injection elements
so that σ 0 on �inj can be computed on-the-fly by the SEM. In short,
we move the task of stress computation from the first stage to the
second stage. The price is that the storage for recording u0 over
the injection elements will be 3(p + 1)/(3 + 6) times of that for
recording both u0 and σ 0 on �inj, where p is the polynomial order
of the SEM (commonly p = 4). Having resolved the difficulty of
stress computation, this scheme makes a good start but remains in-
sufficient, as the right-hand side of eq. (16) is still a surface integral,
difficult to implement when �inj has a complex geometry.

To convert the surface traction into a volume source, we resort
to eq. (9b), which shows that the surface integral over �inj equals
to a volume integral over �N, essentially a divergence theorem.
Inserting eq. (9b) into (14), we obtain a modified weak form for
uhy:∫

�

(
ρ∂2

t uhy · w + ∇uhy : C : ∇w
)

dr3

=
∫

�N

(
ρ0∂

2
t u0 · w + ∇u0 : C0 : ∇w

)
dr3. (A1)

Consider an injection GLL point P connected to by an injection
element Einj and an exterior element Eext, as shown in Fig. A1. The
discretized from of eq. (A1) at point P can be written as (see chap.

7, Igel 2017, for the SEM discretization of a weak form)

m inj(P)∂2
t u(P) +

∑
Q∈Einj

Kinj(P, Q) · u(Q)

+ mext(P)∂2
t δu(P) +

∑
Q∈Eext

Kext(P, Q) · δu(Q)

= m inj(P)∂2
t u0(P) +

∑
Q∈Einj

Kinj(P, Q) · u0(Q), (A2)

where minj(P) and mext(P) are the two partial masses of P contributed,
respectively, by Einj and Eext, and Kinj(P, Q) a stiffness matrix of
size 3 × 3 such that Kinj(P, Q) · u(Q) yields the contribution of Einj

to the stiffness force at P resulting from a displacement u at GLL
point Q, similarly for Kext(P, Q). It is noted that, in eq. (A1), we
have ρ and C on the left-hand side and ρ0 and C0 on the right-hand
side, whereas we use the same minj and Kinj on both sides of eq. (A2);
this is because we do not allow any perturbation within an injection
element. Besides, we have incorporated in eq. (A2) the definition
of uhy by eq. (12), so the Dirichlet boundary condition in eq. (15)
has been satisfied. No longer including a surface term (a term with
n), eq. (A2) still looks strenuous for implementation because two
masses and two wavefields coexist at P. Using u = u0 + δu, we can
merge the three mass terms (while keeping the three stiffness terms)
to obtain

m(P)∂2
t δu(P) +

∑
Q∈Einj

Kinj(P, Q) · u(Q)

+
∑

Q∈Eext

Kext(P, Q) · δu(Q)

=
∑

Q∈Einj

Kinj(P, Q) · u0(Q). (A3)

This equation reveals an extremely simple scheme.
By examining each stiffness term in eq. (A3), we now solve a

modified hybrid wavefield that has a unique value at each GLL
point:

u∗
hy

def=
⎧⎨
⎩

δu, at a non-injection GLL point outside �inj;
δu, at an injection GLL point;
u, at a non-injection GLL point inside �inj.

(A4)

Compared to the originally defined uhy, the only difference is that
u∗

hy is forced to be δu on �inj, as required by the only mass term in
eq. (A3). From a computational viewpoint, u∗

hy involves no discon-
tinuity on �inj, so the SEM architecture remains unchanged. Only
two extra steps are required when computing the stiffness force of
an injection element (such as Einj): first, u0 must be added to u∗

hy (or
δu) at its injection GLL points to reconstruct uhy (or u) over Einj,
as required by the second term on the left-hand side of eq. (A3);
secondly, we need to compute the stiffness force due to u0 (which
has been recorded over Einj) and, only at the injection GLL points,
subtract it from the stiffness force due to uhy, as required by the
right-hand side of eq. (A3). Nothing changes for the exterior or
the interior elements. A complete workflow is shown in Fig. A2.
Such a workflow is similar to the one proposed by Masson et al.
(2013). The difference is that Masson et al. (2013) have suggested
recording both the stiffness force and the displacement during the
incident simulation whereas we only record the displacement and
compute the stiffness force on the fly in the injection simulation.
Unlike displacement, stiffness force is a discretization-dependent
field, so a recorded stiffness force field can be injected only when
the incident and the injection simulations use the same mesh.
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Figure A2. A traction-free scheme for implementing wavefield injection in
SEM. The mesh setup is shown in Fig. A1. We assume that the incident
wavefield u0 has been recorded over the injection elements (at both its
injection and non-injection GLL points). The two shaded boxes indicate the
two extra steps introduced by wavefield injection. The boxes with rounded
corners indicate the operations on GLL points and the rest on elements.

In comparison with a traction- or stress-based scheme, our
displacement-based one can benefit from improved flexibility and
simplicity, as summarized below:

(i)Requiring only u0 over the injection elements, it broadens the
choice of the global solver or saves the effort of implementing
stress calculation in the selected global solver.
(ii)Agnostic of the geometry of �inj, it allows for an arbitrary con-
struction of the near-field subdomain; this can help enhancing model
comprehensiveness and facilitating a compatible connection be-
tween the two cross-scale computational domains.
(iii)The two extra steps introduced by wavefield injection are en-
capsulated in stiffness force calculation, minimizing the changes to
the host SEM; in AxiSEM3D, for instance, these two steps are in-
tegrated into the ‘scattering’ and ‘gathering’ operations in Fig. A2,
implemented by class inheritance with less than a dozen lines of
extra code.

These advantages come at the expense of an expanded storage for
recording u0 over the injection elements: with p = 4, for example,
the storage will be increased by ∼66 per cent in both 2-D and 3-D.

A P P E N D I X B : R E C O R D I N G O F T H E
I N C I D E N T WAV E F I E L D

During an injection simulation with AxiSEM3D, the incident wave-
field u0 must be injected as a Fourier series expanded under
the heterogeneity-centred coordinate system (sh, φh, zh), that is,
uα

0 (sh, zh), α = 0, 1, . . . , nhet
u (sh, zh). However, these Fourier coef-

ficients become undefined in the source-centred coordinate system
(ss, φs, zs) under which u0 is computed and recorded. This issue can
be easily solved by recording u0 at the ‘cardinal’ points associated
with each GLL point over the injection elements.

Consider a generic GLL point located at (s, z) in D, which has
a Fourier expansion order of nu. This GLL point can be associated
with (2nu + 1) cardinal points located at (s, φJ, z), J = 0, 1, . . . ,
2nu, where

φ J = 2π J

2nu + 1
. (B1)

Given a generic 3-D function f(s, φ, z), it is straightforward to show
that fα(s, z), α = 0, 1, . . . , nu and f(s, φJ, z), J = 0, 1, . . . , 2nu

are two equivalent azimuthal discretizations (chap. 5 and 10, Boyd
2001). The conversion between the two can be efficiently handled
by a fast Fourier transform.

The following steps are required to prepare for an injection sim-
ulation with AxiSEM3D. Given a GLL point at which uα

0 (sh, zh)
is required, we first find its cardinal points (sh, φ

J
h , zh) and locate

them in the source-centred coordinate system, that is, a coordi-
nate transformation from (sh, φ

J
h , zh) to (s J

s , φ J
s , z J

s ). Next, we com-
pute and record u0(s J

s , φ J
s , z J

s ) by the incident simulation. Finally,
we perform another coordinate transformation from u0(s J

s , φ J
s , z J

s )
back to u0(sh, φ

J
h , zh) and compute the required Fourier coefficients

uα
0 (sh, zh) by a fast Fourier transform. Compared with the two sim-

ulations, the computational cost for the processing of u0 is always
negligible because the injection elements take up a tiny fraction of
the computational domain.

The above process only requires recording the real-valued u0

at the given 3-D cardinal points (s J
s , φ J

s , z J
s ), so the global solver

can be any one capable of computing the displacement field in the
background model. Using AxiSEM3D as the global solver, this
process can be optimized to significantly reduce the storage of u0.
Instead of recording u0 at (s J

s , φ J
s , z J

s ), we can directly record its
Fourier coefficients in the source-centred coordinate system during
the incident simulation, that is, uα

0 (ss, zs), α = 0, 1, . . . , n∗
u , whereas

u0(s J
s , φ J

s , z J
s ) can be computed on the fly in the injection simula-

tion. Because u0 is quasi-axisymmetric in the source-centred co-
ordinate system, the Fourier expansion order n∗

u will be small; for
example, n∗

u = 2 for an axisymmetric background model, reducing
the wavefield storage from 3-D to 2-D. Such a strategy is similar
to Instaseis (van Driel et al. 2015), the difference being that we
compute a database covering the heterogeneity instead of on the
surface. For example, we have created a database for the study of
ULVZs, which covers the lowermost 30 km of the entire mantle (so
that the 3-D ULVZ can be placed at any location on the CMB and
can have an arbitrary lateral shape) and a record length of 2400 s
(with a sampling frequency of 20 per period). This database takes
up a 2 TB storage at 1 Hz, which can be reduced to 250 GB at
0.5 Hz.
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