
Articles
https://doi.org/10.1038/s41559-019-1059-z

1Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland. 2Department of Ecology & Evolution, University of Chicago, Chicago, IL, USA. 
3Northwestern Institute on Complex Systems, Evanston, IL, USA. *e-mail: daniel.maynard@usys.ethz.ch

Ecologists have long used small experimental systems to explore 
and test fundamental ecological phenomena: Gause’s experi-
ments1 illustrated and popularized the principle of competi-

tive exclusion, chemostat-based systems highlighted the need for 
eco-evolutionary modelling2, stage-structured populations grown 
in laboratory conditions offered a clear example of chaotic dynam-
ics3 and yeast communities have provided key insight into ecologi-
cal tipping points4.

Despite these advances, experimenting with more diverse eco-
logical communities has proven exceedingly difficult for several 
reasons. First, a pool of n species can give rise to as many as 2n − 1 
distinct species assemblages (that is, combinations of the presence 
and absence of species). Even for moderate n, these are too many 
assemblages to handle experimentally. Second, rarely will all pos-
sible assemblages lead to coexistence; often, large communities col-
lapse to smaller subsets of species due to extinctions (for example, a 
two-species community collapsing to a monoculture). Finally, two 
replicates of the same assemblage might lead to different outcomes—
due to multistability or stochasticity, for example—complicating  
efforts to characterize the dynamics of the system.

These challenges have been raised in numerous studies that 
experimented with speciose communities5–8. A common approach 
is to seed plots with single species (monocultures), pairs of spe-
cies and several larger assemblages, often chosen at random9. 
Owing to the number of species considered, however, the space 
of possible assemblages is so large that only a small fraction of 
assemblages can be tested. For example, the Biodiversity II experi-
ment included 18 different plant species, from which 168 of the 
218 − 1 = 262,143 possible species assemblages were planted, with 
their dynamics tracked for decades10. Ideally, one would use a prin-
cipled method to choose which assemblages to test, to maximize 
the probability of coexistence across assemblages (and therefore 
not waste experiments), while ensuring that the selected subset 
of experiments allows for robust inference across the full set of 
unobserved assemblages.

The goal of this work is to address these challenges by develop-
ing a method in which a limited number of observations is used 

to predict coexistence for all 2n − 1 assemblages that can be formed 
from a pool of n species. For any combination of species in the pool, 
our method attempts to determine whether the species can coexist 
and, if so, at what abundances. As a starting point, a limited number 
of experiments should be conducted, using a variety of assemblages, 
and species abundances should be measured at a single (final) time 
point in each experimental community. These modest requirements 
make this method ideally suited for studying speciose communities. 
While this approach can be applied to any ecological system, it is 
likely to be most useful in experimental settings where stochasticity 
and exogenous factors can be minimized.

The approach is summarized in Box 1 and Fig. 1, and explained 
in detail in the Methods. By recording the abundances of species 
grown in different combinations (a snapshot of abundances that we 
refer to as a dynamical endpoint), we parameterize a matrix B that 
encodes the abundances of species in all possible combinations—
including those not observed experimentally. Armed with this esti-
mate, we can predict the outcomes of unobserved experiments: for 
each possible species assemblage, our method returns the probabil-
ity that the species will coexist, and, if they do, predicts the abun-
dance of each species in the assemblage. We test this approach using 
data from three published studies, showing that it can predict out-
of-fit experimental outcomes with high accuracy. We then explore 
the flexibility of this method by simulating data from a variety of 
nonlinear, non-equilibrium and non-pairwise dynamical models of 
species interactions. Finally, we show that the number of experi-
ments needed to fit this model scales linearly with the number of 
species, requiring on the order of n experiments to predict the out-
comes of all 2n − 1 possible assemblages.

Results
Empirical systems. To demonstrate this method, we first analyse 
published data of three experimental systems. Although these stud-
ies were not specifically designed to test our method, each study 
reports the final abundances of all species in each experimental 
assemblage, and each contains a sufficient number of unique assem-
blages to benchmark the method by making out-of-fit predictions.
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First, we consider data from Kuebbing et  al.11, who conducted 
growth experiments using two phylogenetically paired sets of old-
field plants. Both sets contained four species, drawn from the fami-
lies Asteraceae, Fabaceae, Lamiaceae and Poaceae. In one set, all 
species were native to the study site; in the other, all species were 
non-native. For both the native and non-native pools, experimen-
tal communities were initialized with 14 out of 15 (24 − 1) pos-
sible assemblages, with each combination replicated 10 times. 
Dry-weight aboveground biomass for each species in each assem-
blage was recorded after 112 days of growth11.

Second, we analyse data from Rakowski and Cardinale12, who 
grew consumer-resource communities consisting of five species of 
green algae and two herbivorous species from the family Daphniidae 

(Ceriodaphnia dubia and Daphnia pulex). Here we focus on the four 
algal species that survived in a sufficient number of endpoints to 
test our method: Chlorella sorokiniana, Scenedesmus acuminatus, 
Monoraphidium minutum and Monoraphidium arcuatum. The algae 
were grown in all four-species combinations with high replication, 
and one of the two herbivores was added to two-thirds of the rep-
licates. The communities were incubated for 28 days, during which 
time each assemblage collapsed to a subset of the initial pool, gener-
ating a variety of distinct endpoints.

Third, we turn to time-series data published by Pennekamp 
et al.13, who studied six species of ciliates growing on a bacterized 
medium, capturing 53 of the 63 (26 − 1) possible assemblages. We 
omit one species that declined in abundance across the time series 

Box 1 | Approach

Goal and applications. Given a pool of n species, our method 
aims to predict the outcomes of all 2n − 1 possible assemblages. For 
each assemblage, we predict whether the species can coexist and, if 
so, at what abundances.

This method can aid experimentalists in a variety of settings. 
For example, when studying the relationship between diversity 
and productivity, one could conduct a pilot study using as few 
as 2n plots (for example, all monocultures and all leave-one-out 
communities), and then use the method to predict productivity in 
all other possible assemblages. Similarly, the method could be used 
to identify candidate assemblages with maximal productivity (for 
example, for the development of biofuels). The method can also 
be used as a road map to build large experimental communities 
in which all species coexist—a challenging feat when selecting 
assemblages at random7,22,23.

Input. The input for the method is a list of empirical endpoints, 
each recording the abundance of species in one subcommunity at 
the end of the experiment. Given a sufficiently large and diverse 
set of endpoints (Methods), one can use these data to predict 
coexistence for all unobserved assemblages. In particular, one 
needs to start with a variety of assemblages that differ in species 
composition or initial densities. Each assemblage is allowed to 
follow its dynamical trajectory until a predetermined time or 
until the condition is reached (for example, optical density or 
chlorophyll content stabilizes when dealing with bacteria or 
algae), at which point the abundances of all extant species in the 
community are recorded. These endpoint measurements are then 
organized into a matrix, with columns corresponding to species 
and rows to communities (Fig. 1).

Model. To start with a simple, extensible model, we take the 
endpoint abundance of each species i in each endpoint assemblage 
k to be a linear function of the endpoint abundances of the other 
species present in the final assemblage:

zðkÞi ¼ γi þ
X

j≠i

τijz
ðkÞ
j for all zðkÞi >0 ð1Þ

where k is an index referring to the unique set of species present at 
non-zero abundance in the endpoint measurement; where γi mod-
els the abundance of i when growing alone; and τij is the per capita 
effect that species j has, if present, on the endpoint abundance of i. 
Ecologically, we expect γi > 0 for producers and γi ≤ 0 for consum-
ers and predators. Equation (1) can be rewritten more concisely 
as (Methods):

�1 ¼
X

j

Bijz
ðkÞ
j for all zðkÞj >0 ð2Þ

where Bii = −1/γi and Bij = τij/γi for i ≠ j. These coefficients are 
then collected into the n × n matrix B. The empirically measured 
endpoint abundances for k are denoted x(k), and are assumed to 
be a noisy estimate of the ‘true’ endpoint abundance z(k). See the 
Methods for details.

Parameter estimation. In theory, estimating the entries of B 
amounts to performing n linear regressions (Fig. 1c), effectively 
fitting a collection of n hyperplanes through the measured 
endpoints29. However, this straightforward approach ignores the 
error structure inherent in the data (Supplementary Information). 
We thus develop and implement a Bayesian regression approach 
that accounts for measurement error in each xðkÞi

I
 (Methods). 

This yields posterior distributions for B and for the estimated 
endpoint abundances ẑðkÞi

I
.

Prediction. Under the model given by equation (1), B encodes 
all possible endpoints of the system. With an estimate of B in hand, 
we can thus determine whether any particular set of species can 
coexist by taking a matrix inverse (Fig. 1d and Methods). For 
example, to predict the outcome of the unobserved combination 
of species 1 and 2 in Fig. 1d, we take the corresponding 2 × 2 
submatrix of B, invert it and compute the negative row sums. The 
resulting values are the predicted endpoint abundances for this two-
species community. If any abundances are negative, this indicates 
that these species cannot coexist. If all abundances are positive, 
then these species may coexist, although the endpoint might be 
dynamically unstable, and therefore unreachable experimentally 
(Methods). The probability of coexistence for unobserved or out-
of-fit assemblages is calculated as the proportion of posterior B 
matrices that result in the coexistence of a given assemblage.

Assumptions. This method is best suited to settings where 
exogenous factors (for example, dispersal or immigration) and 
stochasticity can be minimized. It is therefore ideal for controlled 
laboratory or microcosm studies, but may require higher 
replication in field-based systems to overcome experimental noise.

Although our fitting procedure assumes that endpoints are 
related in a linear fashion (equation (1)), it does not assume that 
the community dynamics are linear or additive (Extended Data 
Figs. 1–6 and Supplementary Information). The method does, 
however, require that dynamics play out long enough to ensure 
that species have time to go extinct, thereby preventing ‘false 
positive’ coexistence (Extended Data Fig. 8 and Supplementary 
Information).

Finally, when endpoint abundances are not believed to be 
linearly related, equation (1) can be modified to include additional 
terms (for example, higher-order interactions), and the same 
fitting approach can be applied without requiring substantially 
more experiments.
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(Tetrahymena thermophila), leading to the five-species subsystem 
used here: Colpidium striatum, Dexiostoma campylum, Loxocephalus 
sp., Paramecium caudatum and Spirostomum teres. Each experimen-
tal assemblage was replicated twice, and each species’ density in 
each assemblage was tracked for 57 days (ref.14). Experiments were 
repeated at six different temperatures ranging from 15 to 25 °C.

These three studies encompass ten distinct experimental systems: 
native and non-native plant communities, two different herbivore–
algae subcommunities and six temperature conditions for protists. 
For each experiment, the species abundances for all assemblages were 
reported, providing a sufficient diversity of endpoints to fit our model 
and test the accuracy on out-of-fit assemblages using a jackknife 
leave-one-out approach (Methods and Supplementary Information). 
Specifically, for every system we omitted each of the k assemblages in 
turn, using the remaining k − 1 assemblages to fit the model and pre-
dict the abundances of all species in the omitted community. We then 
compared our predictions with what was observed experimentally.

As the plant experiments included all but one of the possible com-
binations of species, we were also able to implement a more rigorous 
k-fold cross-validation approach. We used a subset of endpoints to 
parameterize the model and predict the endpoint abundances in the 
omitted communities; we repeated this procedure for all combina-
tions of endpoints sufficient to fit the model, ranging from one to 
eight omitted communities (Supplementary Information).

Abundance patterns. As illustrated in Fig. 2, our method predicts 
the endpoints of each system with high accuracy. Across all assem-
blages, the medians of the posterior distributions generated by 
our method closely track the median observed abundances. Not 
only does our method achieve high accuracy for within-fit data  
(Fig. 2a,c,e); it also accurately estimates the out-of-fit endpoints and 
captures the observed variability in abundances (Fig. 2b,d,f).

By tallying the proportion of posterior draws of B that result in 
coexistence (Methods), we can also quantify the probability that an 
unobserved or out-of-fit assemblage will go extinct. For example, 
in both algal systems, our results suggest that the unobserved two-
species community comprising C. sorokiniana and M. minutum has 
a high probability of extinction, regardless of the identity of the her-
bivore (Supplementary Figs. 5 and 6). Our findings also suggest that 
the four-species protist system comprising C. striatum, D. campylum,  

P. caudatum and S. teres has a non-zero risk of extinction at 19, 21 
and 23 °C, driven in part by high variation and relatively low abun-
dance of D. campylum, which causes the posterior abundance distri-
bution to overlap zero (Supplementary Figs. 7–12). Verifying these 
predictions would require additional experimentation; yet such 
information can help identify which unobserved assemblages one 
might avoid in future experiments to minimize the risk of extinc-
tions (see Study design, below).

For the plant data, a k-fold cross-validation approach dem-
onstrates that only a few experimental endpoints are sufficient 
to predict abundances in all 15 assemblages with high accuracy 
(Supplementary Information). However, the choice of experiments 
used to fit the model (that is, the experimental design) is critical, as 
discussed in detail in the Study design section.

Finally, for the protist system, we have access to the full time series 
describing the dynamics, allowing us to compare the quality of fit of 
our method against traditional methods based on time-series data. 
The estimates obtained using only endpoint data compare favour-
ably to those obtained using standard trajectory matching to fit a 
generalized Lotka–Volterra dynamical model to the full time series 
(Supplementary Information). Yet, by forgoing the need to model 
the dynamics, our method predicts endpoint abundances with a 
higher accuracy and requires only a fraction of the data.

Structure of B. Because our approach does not attempt to model 
the dynamics of these systems, B has no direct mechanistic inter-
pretation—it simply encodes the patterns in the endpoint abun-
dances (Methods). We also reiterate that the experimental studies 
used here were not designed to test our method, such that their use 
is intended only to illustrate this approach. Yet, by exploring the 
structure of B, we can demonstrate that our estimates are internally 
consistent and align with the known biology of the experimental 
systems, verifying that our method captures meaningful patterns 
in the data and is not overfitting the endpoints (Figs. 3 and 4; 
Supplementary Information).

For example, we find that the coefficients of B, which summa-
rize the effect of one species’ endpoint abundance on another’s, 
are phylogenetically conserved between the native and non-native 
plant datasets (Fig. 3a). In the herbivore–algae system, the identity 
of the herbivore has little effect on the interactions among the algae, 
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suggesting weak or non-existent herbivore-mediated higher-order 
effects (Fig. 3b). In the protist system, the species-by-species coeffi-
cients exhibit consistent signs and magnitudes across temperatures, 
with many of these coefficients varying smoothly (Fig. 4).

These results demonstrate the type of ecological insight that can 
be gained, even without making mechanistic interpretations about 
the parameters. Moreover, the fact that these estimates of B are 
internally consistent—for example, varying smoothly across chang-
ing temperatures—highlights that this method is not overfitting the 
data, in which case we would expect our estimates to fluctuate dra-
matically with small changes in the system.

Simulations. To explore the robustness and generality of these 
findings, we simulated endpoint data from a variety of nonlinear, 

non-equilibrium and non-pairwise dynamical models, including 
Lotka–Volterra dynamics with limit cycles, competition with Allee 
effects15, facultative mutualism with saturation16, consumption 
with saturation17 and competition with high-order interactions18 
(Supplementary Information).

In all cases, our approach accurately recovers the model end-
points (Extended Data Figs. 1–6), demonstrating that, despite 
the complex and nonlinear dynamics, the endpoint structures of 
these systems are approximately additive and linear (as in equa-
tion (1)). The method also successfully predicts which combi-
nations of species will be unable to coexist. For example, in the 
model with mutualism and saturation, our method correctly 
identifies which assemblages cannot coexist (Extended Data  
Figs. 4 and 5), and, for the Allee effect model, it correctly identifies  
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the unstable fixed points even though they are never observed 
(Extended Data Fig. 3).

We intentionally selected dynamical systems that can exhibit 
oscillatory dynamics or alternative states—features that are difficult 
to reconcile with the assumption of a single endpoint (equation (1)).  
In these cases, our approach accurately estimates the average of the 
distribution of abundances (for example, the centroid of the oscil-
lations; Extended Data Figs. 2 and 5). The usefulness of this type 
of estimate will depend on the context. In many ecological appli-
cations, we do not need to know the precise dynamics of a com-
munity; all we want to know is whether a given set of species can 
coexist (that is, if the centroid is far enough from zero to avoid sto-
chastic extinctions), or what species’ average abundances will be 
across a landscape (for example, for diversity-function or conserva-
tion questions). In such settings, this method can offer insight even 
if the centre of the oscillations is never observed experimentally.

Our method struggled most with systems containing strong 
higher-order interactions, where the effect of one species on 
another varies depending on the abundance of a third species 
(Extended Data Fig. 6). These nonlinear relationships, however, 
can easily be incorporated into our method by including additional 
terms in equation (1), such as interactions between pairs of spe-
cies, P

j

P
m τijmz

ðkÞ
j zðkÞm

I

, exactly as in standard polynomial regres-
sion models. In this way, exploring more complex models does not 
require more complex experimental designs or substantially more 
data19,20. Thus, in settings where the baseline model performs poorly, 
different choices for equation (1) can be tested, allowing researchers 
to adjust the study design accordingly and benchmark the model 
formulations using out-of-fit or k-fold cross validation.

Study design. This approach suggests new study designs for param-
eterizing community models and building large experimental 
systems. Because multispecies endpoints contribute to multiple 

equations used to estimate B, diverse communities contain more 
information about B than do small communities (for example, 
the endpoint for the three-species communities in Fig. 1b (trian-
gles) appears in all three systems of equations shown in Fig. 1c). 
Leveraging this fact, our method provides an approach to experi-
mental design that scales linearly with the size of the species pool.

Rather than growing species in monocultures and in all pairwise 
combinations7,8,21–23, one could first grow the full community of n 
species along with all leave-one-out communities comprising n − 1 
species each. Using this approach, it is possible to estimate B using 
only n + 1 experiments (as opposed to n2/2). This design, however, 
is not robust in practice: these large communities contain little 
information about species-poor assemblages, potentially leading 
to substantial prediction error for smaller assemblages. Yet, by also 
measuring a selection of species-poor assemblages—for example, 
the n monocultures—one can efficiently anchor the fitted hyper-
planes, providing high quality of fit using only 2n + 1 experiments.

To examine the practical impact of experimental design, we fit 
the model for both plant systems using six assemblages to predict the 
remaining eight endpoints out-of-fit. There are 15 possible designs 
(combinations of assemblages) that make use of 6 endpoints and 
allow for the parameterization of the model; in Fig. 5 we show the 
best- and worst-fitting designs for the native plant pool. The predic-
tion accuracy shows a wide range, highlighting the importance of 
selecting a robust design. However, the best six-assemblage design 
has a goodness of fit (R2) on par with that obtained using the full 
dataset (Fig. 2), despite using less than half of the endpoints. The 
same qualitative outcome is found for the non-native plant commu-
nity. Increasing the number of endpoints used to fit the native and 
non-native plant systems (from 6 to 13) reinforces this pattern: the 
best designs for any number of in-fit assemblages fare almost as well 
as the design using all experiments (Supplementary Information). 
However, across nearly 3,000 k-fold cross-validation assemblages, 
there is substantial variance in goodness of fit, with many designs 
performing well and a few performing very poorly.

Using simulated endpoint data, we show that designs using a mix 
of species-rich and species-poor communities fare better than those 
using only small or large communities to fit the data (Extended 
Data Fig. 7). In particular, the design using all monocultures and 
all pairs of species performs poorly relative to random designs with 
the same number of experiments. In contrast, the design using all 
monocultures and all leave-one-out communities is among the best 
designs for any number of experiments.

In practice, an experimental design may also fail because some 
assemblages collapse to smaller communities, leading to fewer 
unique assemblages than desired. To address this challenge, we 
propose a simple, iterative scheme for experimental design. First, 
one conducts a minimal set of experiments sufficient to obtain a 
draft estimate of B. This matrix is then used to predict the out-
comes of all unperformed experiments. The assemblages with the 
highest inferred probability of coexistence are selected for a second 
round of experiments, increasing the chances that these new com-
munities yield useful data. One might repeat this process several 
times, updating the estimate of B after each iteration. At each stage, 
it is possible to compute the out-of-fit accuracy of the previous B, 
giving a real-time measure of the model performance. If the quality 
of fit remains poor even after several iterations (or, for example, 
after annual sampling points in a biodiversity–ecosystem func-
tion experiment), the model assumptions can be adjusted, such 
as through the addition of higher-order interactions or quadratic 
terms in equation (1). By iteratively updating B, one maximizes 
the utility of each round of experiments, avoiding wasted experi-
ments while ensuring adequate model fit. This approach can help 
experimentalists navigate the enormous space of possible assem-
blages, providing an efficient way to explore, build and quantify 
large experimental systems.
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non-native plant systems, paired by family into Asteraceae, Fabaceae, 
Lamiaceae and Poaceae, revealing that the effect of a species from one 
family on a species from another are conserved across the two systems.  
b, A plot of the log-transformed algae-by-algae coefficients for the 
herbivore–algae system, estimated for the communities containing D. pulex 
versus those containing C. dubia. The coefficients are strongly consistent 
across both herbivore systems, suggesting minimal herbivore-induced 
changes in algae-by-algae interactions (that is, negligible higher-order 
effects on the endpoints). The internal consistency in the estimated B for 
each system in a and b highlights that the method is not overfitting the 
data, and illustrates how this approach can offer basic ecological insight. 
The dashed lines give the mean regression trends, with the blue shaded 
regions showing 95% confidence bands. The horizontal and vertical 
bars show the posterior 95% prediction interval for each coefficient. The 
log transformations include the addition of an offset to ensure that all 
coefficients are positive; see the Supplementary Information for details.
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Discussion and conclusions
From a small set of observed experimental assemblages, we show 
how to parameterize a model that can be used to predict the out-
comes of all possible assemblages. We have successfully applied this 
approach to three independent experimental systems, obtaining  

high-quality predictions for out-of-fit data, despite the fact that 
our method completely neglects functional responses, behavioural 
changes, spatial effects, resource depletion and so on—all of which have 
been documented in these systems to varying degrees24–28. The sim-
ulation results further illustrate that nonlinear and non-equilibrium  
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Fig. 4 | Comparison of B in the protist system across the six temperatures. Each panel depicts the change in the respective Bij coefficient across 
temperature treatments, organized with B11 in the upper left and B55 in the lower right. The box plots in each panel report the medians and interquartile 
ranges for the posterior distribution of each coefficient at each temperature. The colours reflect the median coefficient value, with blue indicating positive 
effects and red indicating negative effects. Our method reveals generally consistent changes in these coefficients across the temperature gradient, 
further highlighting that this method is not overfitting the data and is identifying a biologically reasonable pattern. Some coefficients exhibit nonlinear 
fluctuations—such as the effect of Loxocephalus sp. on the endpoint abundance of P. caudatum—but these parameters generally exhibit consistent signs, 
similar magnitudes and overlapping prediction intervals, indicative of statistical noise. Nevertheless, because our method is statistical in nature, we 
caution against any mechanistic interpretation of these coefficients; they are depicted here to illustrate the consistency of the model fit across different 
experimental conditions.
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dynamics need not produce nonlinear endpoint structures. 
Together, these results demonstrate that a simple additive model 
and a small set of experiments can provide robust out-of-fit predic-
tions for complex dynamical systems.

In applying this approach, an important practical consideration 
is deciding when to end an experiment and sample the species 
abundances. In some cases, there may be a biologically relevant time 
point (for example, the end of the growing season for annual plants). 
In other settings, one might use some inexpensive, non-invasive 
technique to monitor the state of the community (for example, opti-
cal density, chlorophyll fluorescence or total respiration) and track 
this measure until it converges on a stationary distribution, as was 
done here for the protist experiment (Supplementary Information). 
In general, our results suggest that one simply needs to ensure that 
the dynamics have passed through any transients, allowing species 
sufficient time to go extinct. In the protist system, for example, the 
model fit was poor between days 1 and 10, but increased sharply in 
quality at day 11 and remained good for all days between 11 and 30 
(Extended Data Fig. 8 and Supplementary Information), highlight-
ing that this method is not overly sensitive to the choice of when 
to end the experiment. In systems where the endpoints cannot be 
observed, or where there is no principled way to determine when 
to end the experiments—as in communities that cannot be easily 
manipulated or systems with dynamics that play out over very long 
periods—alternative methods might be more suitable.

A key benefit of this approach is that the minimum number of 
required experiments scales linearly with the size of the species 
pool, helping to overcome a central challenge in studying large 
experimental systems. In theory, this method becomes increasingly 
efficient as the size of the species pool increases, with the minimum 
sufficient proportion of experiments scaling as (n + 1)/(2n − 1). In 
practice, however, large communities may present computational 

challenges, as the number of parameters to be estimated still scales 
with n2. In large experimental systems, it is also likely that some 
species will persist in fewer than n unique endpoints, preventing the 
estimation of their associated parameters. Invoking strict Bayesian 
priors or employing more advanced search algorithms may help 
overcome some of these limitations. Nevertheless, improving the 
computational efficiency of this approach is a challenge, and one 
that would help extend this method to highly speciose systems.

Because this method requires relatively few experiments, it can 
easily be integrated into traditional studies (for example, biodi-
versity–ecosystem function studies) without requiring a substan-
tial overhaul of the experimental design. That is, we envision that 
this approach can be used to complement—rather than replace—
current experimental methods. However, to ensure robust pre-
dictions, we emphasize that it may be necessary to use higher 
replication in field-based experiments to overcome stochasticity 
and experimental noise. Indeed, when external factors (includ-
ing, especially, dispersal and recruitment) cannot be adequately 
controlled, this approach may not be appropriate. However, one 
advantage of our method is that it provides a straightforward 
way to assess performance using out-of-fit predictions. As this 
approach permits very efficient experimental designs, high repli-
cation may also be more feasible.

Central to our method is that it uses a single measurement for 
each assemblage. By focusing exclusively on the abundances of 
species present in a final snapshot, this approach requires dras-
tically fewer measurements than time-series methods. Yet this 
method also completely ignores initial conditions: two experiments 
that start with different species compositions but collapse to the 
same assemblage are considered to be replicates of this endpoint. 
Extending the model to account for initial conditions is an impor-
tant next step, as doing so should help improve fit and prediction by 

R 2 = 0.97

R 2 = 0.39

B
est-perform

ing design
W

orst-perform
ing design

0.3 1.0 3.0

0.1

1.0

10.0

0.1

1.0

10.0

Observed abundance

P
re

di
ct

ed
 a

bu
nd

an
ce

P
re

di
ct

ed
 a

bu
nd

an
ce

a
B

est-perform
ing design

W
orst-perform

ing design

as fa la po as fa as la as po fa la fa po la po as fa la as fa po as la po as fa la po

0.1

1.0

10.0

0.1

1.0

10.0

b

Fig. 5 | Predicting multiple endpoints out-of-fit. a,b, The best-performing (top) and worst-performing (bottom) experimental designs using six 
assemblages to fit the model and predict the remaining eight assemblages. a, The observed versus predicted abundances for each experimental system, 
with vertical error bars denoting the 95% prediction intervals of the posterior distributions. The points used to fit the model are in lighter shades and 
a smaller size; larger points with darker colours represent out-of-fit predictions. R2 is calculated using only out-of-fit data. b, Predicted abundances for 
each assemblage. The unshaded violin plots show the distributions of the predictions for in-fit data used to fit the model (plus symbols); the violin plots 
with solid colours show the distributions of the out-of-fit data (cross symbols). The choice of which assemblages to use to fit the model (that is, the 
experimental design) is crucial, as made clear by the difference in quality of fit between the worst (bottom) and best (top) designs making use of six 
assemblages. Similar results are found for the non-native plants, and when more assemblages are used to fit the model (Supplementary Figs. 24–26). For 
larger communities, an efficient design is the choice of all monocultures, all leave-one-out communities and the full community (Extended Data Fig. 7). 
The x-axis labels denote different plant families: as, Asteraceae; fa, Fabaceae; la, Lamiaceae; po, Poaceae.
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incorporating knowledge about which assemblages have collapsed 
due to extinctions.

While many challenges remain in the study of speciose ecologi-
cal communities, our framework provides a powerful approach 
for exploring these systems. We adopt a simplified, statistical 
method that robustly predicts the outcomes of unobserved experi-
ments using relatively few observations. By forgoing dynamical 
modelling, we gain tractability, thereby providing a principled 
and efficient means of studying, navigating and building diverse 
experimental systems.

Methods
Experimental setting. We consider a pool of n species, which can give rise to as 
many as 2n − 1 distinct combinations of species’ presence and absence. For any 
combination (henceforth, assemblage), we consider an experiment in which each 
of the selected species is inoculated at some initial density in controlled conditions, 
and the dynamics of the system (that is, inter- and intraspecific interactions) are 
allowed to play out. Once sufficient time has elapsed, the abundance of every 
species is measured. As explained in the main text, several methods could inform 
us of when to sample the abundances, and in the Supplementary Information we 
show the consequences of sampling during the transient phase. Here, we simply 
assume that the system has settled in some dynamical attractor, including the 
possibility of stochastic fluctuations around an equilibrium, deterministic chaos, 
periodic oscillations and so on. This experimental design permits destructive 
sampling methods (for example, high-throughput sequencing of the endophytic 
microbial assemblage in plants), and does not require any observation of the 
transient dynamics or initial conditions.

We refer to the set of abundance measurements for each assemblage as an 
endpoint of the dynamics, denoted by x(k). Note that there is not a bijective 
mapping between assemblages and endpoints in general. For example, a particular 
assemblage of species may not coexist, in which case the system will collapse to a 
subset of species and reach the same endpoint as if it had been seeded with only 
the subassemblage. Conversely, identical initial assemblages may result in different 
endpoints. Here, we distinguish between two cases: first, the endpoints might be 
sampled from the same attractor, but may differ because of cycling or sampling 
error; second, we might have true multistability29—the replicate systems have 
reached distinct attractors, possibly depending on the initial abundance of each 
species. In this work, we do not explicitly account for the latter case, assuming 
that replicate endpoints are drawn from the same stationary distribution (as such, 
multistability is conflated with sampling error). Instances of true multistability in 
ecological dynamics are well documented, but should be identifiable in data with 
sufficient replication30–32.

Given a set of experimental endpoints, we attempt to predict which unobserved 
assemblages can coexist and at what endpoint abundances. To accomplish this, we 
assume that the endpoints are related by a simple linear model. As noted in Box 1, 
this model takes the form

zðkÞi ¼ γi þ
X

j≠i

τijz
ðkÞ
j k 2 f1; ¼ ; 2n � 1g 8i such that zðkÞi ≠0 ð3Þ

where zi denotes the average (across replicates) endpoint abundance of  
species i. In cases where the stationary distribution is not a fixed point, 
zðkÞ ¼ ðzðkÞ1 ; zðkÞ2 ; :::Þ
I

 can be thought of as the centroid of the attractor for k. The 
coefficients γ and τ are statistically determined constants that relate the endpoint 
abundances to each other. Intuitively, γi models the average abundance of i when 
grown in isolation, and therefore we expect γi to be positive for producers—
reflecting their carrying capacity—and zero (or negative) for consumers and 
predators. The coefficient τij can be seen as the average per capita effect that 
members of j have on the endpoint abundance of i. We assume each τij is constant 
across communities (that is, τij has no dependence on k).

Manipulating equation (3) slightly, we can obtain

0 ¼ 1� 1
γi
zðkÞi þ

X

j≠i

τij
γi
zðkÞj ð4Þ

and, letting Bij ¼ τij
γi

I

 for i ≠ j and Bii ¼ � 1
γi

I

:

�1 ¼
X

j

Bijz
ðkÞ
j ð5Þ

Equation (5) can be written more compactly in matrix form as

�1 ¼ BðkÞzðkÞ ð6Þ

Here, if the kth endpoint contains w species, then the left side of equation (6) is a 
w × 1 vector where every element in the vector is the number 1, and B(k) is the w × w 
submatrix obtained by selecting only the elements of B (the full n × n matrix of 

coefficients) whose rows and columns correspond to species that have non-zero 
density in endpoint k.

Having estimated B, it is possible to predict any of the 2n − 1 endpoints by 
solving equation (6) for a desired k. If the estimated solution, ẑðkÞ

I
, contains any 

negative elements, we interpret this as an indication that the species in k cannot 
coexist. If every element of ẑðkÞ

I
 is positive, these elements give the endpoint 

abundances at which the species may coexist. This condition (non-negativity, or 
feasibility) is necessary for the coexistence of k, but not sufficient, because the 
endpoint (or the attractor associated with it) may not be attractive or stable.

Inferring B from a set of endpoints. We are primarily concerned with the 
practical challenge of inferring B from endpoint data. As a first approach,  
we form equations relating the elements of B and the endpoint abundances,  
and use these to solve for B on a row-by-row (species-by-species) basis. 
Although this ‘naive’ procedure ignores the complex error structure of the model 
(Supplementary Information), it is illustrative of the general approach, helping to 
provide intuition.

To implement this first approach, we introduce the matrices Ei, which contain 
the observed x(k) for any k ∈ {1, …, 2n − 1} such that xðkÞi ≠0

I
. That is, each Ei contains 

all the endpoints in which i is present. Every Ei has n columns, corresponding to 
the n species, and we fill in a zero wherever a species is not present in an endpoint. 
The number of rows of Ei will be variable, depending on the dataset.

As a simple example, consider a case in which we have a pool of three species, 
and species 1 is present in five endpoints: two endpoints containing only species 1 
(monocultures), two endpoints in which species 1 and 2 coexist and one in which 
species 1 and 3 coexist. The structure of matrix E1 would be:

E1 ¼

xð1Þ1 0 0

xð10Þ1 0 0

xð2Þ1 xð2Þ2 0

xð20Þ1 xð20Þ2 0

xð3Þ1 0 xð3Þ3

0
BBBBBBB@

1
CCCCCCCA

ð7Þ

where x(k′) is a replicated endpoint containing the same set of species as x(k). Of 
course, the dataset may contain other endpoints in which i is not present; these 
endpoints will appear in E2 or E3, but not E1. We also highlight the fact that some of 
these rows (endpoints) will be repeated in other Ei. For example, the third row of E1 
will also be present in E2, and the last row of E1 will also appear in E3. This means 
that endpoints containing multiple species provide more information than those 
containing single species, allowing for an efficient experimental design (Extended 
Data Fig. 7 and Supplementary Information).

Having formed the matrices Ei, we can recover the ith row of B, denoted Bi,  
by solving

EiB
t
i ¼ �1 ð8Þ

where the right side of equation (8) is a vector of −1s with as many elements 
as there are endpoints in Ei. A general solution to this equation is given by 
Bt
i ¼ �Eþ

i 1
I

, where Eþ
i
I

 is the Moore–Penrose pseudoinverse of Ei. We write the 
pseudoinverse rather than the inverse because Ei need not be square. The use of 
the pseudoinverse is also convenient because, when analysing actual experimental 
data, replicate experiments may yield different abundances for the same endpoint, 
due to measurement errors or non-point attractors. With the notation introduced 
above, one can simply list all experimental endpoints, including replicates, in the 
corresponding Ei, and solve. In this case, there will not be an exact solution, because 
the system is overdetermined, but the Moore–Penrose pseudoinverse guarantees 
that the matrix recovered is a maximum likelihood (least-squares) estimate of B 
given the data.

An example may help clarify this approach. Consider a series of endpoints 
generated by adding a small amount of noise to solutions of equation (5), with

B ¼
�2 � 3

4 � 1
4

� 3
4 �2 � 1

4

� 1
4 � 1

2 �2

0
B@

1
CA ð9Þ

Collecting the endpoints and constructing E1 for these data gives

E1 ¼

0:55 0 0

0:48 0 0

0:37 0:33 0

0:34 0:37 0

0:44 0 0:45

0:35 0:32 0:38

0:33 0:32 0:35

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð10Þ
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and we recover an estimate of B1 by computing

~B11
~B12
~B13

0
@

1
A ¼

0:55 0 0
0:48 0 0
0:37 0:33 0
0:34 0:37 0
0:44 0 0:45
0:35 0:32 0:38
0:33 0:32 0:35

0
BBBBBBBB@

1
CCCCCCCCA

þ �1
�1
�1
�1
�1
�1
�1

0
BBBBBBBB@

1
CCCCCCCCA

¼
0:904 0:789 0:213 0:116 0:287 �0:175 �0:179
�0:658 �0:574 0:832 1:022 �0:879 0:519 0:566
�0:532 �0:465 �0:617 �0:619 1:123 0:718 0:634

0
@

1
A

�1
�1
�1
�1
�1
�1
�1

0
BBBBBBBB@

1
CCCCCCCCA

¼
�1:95
�0:82
�0:24

0
@

1
A

which closely approximates the true coefficients (−2, −0.74 and −0.25). An 
identical procedure yields estimates for the remaining rows of B.

Requirements. To solve for the coefficients in a given row, Bi, it is necessary that 
the (minimal) structural rank of Ei be n, meaning that the rank must remain n even 
if all of the non-zero values of Ei were made identical33. This condition is equivalent 
to simultaneously imposing three biologically meaningful requirements: (1) each 
species must be present in at least n distinct endpoints, not counting replicates; 
(2) each species must co-occur with each other species in at least one endpoint 
(that is, for every pair of species i and j, there must be some endpoint where i and 
j co-occur, possibly along with other species); and (3) for each i there must exist a 
perfect matching between the n species and the endpoints in which they co-occur 
with i. Put another way, for a focal species i, each endpoint can only count once 
towards the second condition.

These conditions place obvious limitations on the datasets and ecological 
systems for which our method is applicable. Coexistence among species must be 
reasonably widespread for the first and second conditions to hold. In particular, 
if a given pair of species i and j never co-occur, it is impossible to estimate the Bij 
relating their endpoint abundances. Systems with substantial trophic structure 
are unlikely to satisfy these conditions. For example, in a linear food chain, the 
top consumer occurs in only a single endpoint (the full assemblage), violating the 
first condition. Similarly, systems with strong competitive hierarchies will usually 
violate these conditions. In general, we envision our method applied to systems 
where most species are able to persist in isolation, and where the majority of 
interactions are relatively weak (for example, many plant and  
microbial communities).

Finally, we note that our model closely resembles a linear regression on the 
endpoint abundances. In fact, exactly as in linear regression, if we assume (1) that 
the endpoints are measured without error and (2) that the values yi ¼ EiBt

i þ 1
I

 are 
independently, normally distributed with mean 0 and variance σ2, then by taking 
the pseudoinverse we minimize EiBt

i þ 1
�� ��

2
I

 and therefore the variance σ2. The 
first of these assumptions is clearly incompatible with the earlier assumption that 
replicate endpoints are noisy samples from the same attractor. This issue is partially 
reconciled by imposing the structural rank condition explained above; however, 
the error structure of our model is still quite distinct from that of a typical linear 
regression. The fact that these assumptions are not fully appropriate for our setting 
motivates the development of more sophisticated approaches, which are explained 
below and employed in practice.

Accounting for the error structure. The naive regression approach illustrated above 
is straightforward, but has several drawbacks. In particular, empirical data will 
always have some degree of error in the measurements of the densities; moreover, 
each multispecies endpoint is present in multiple matrices (in the example above, 
x(3) would be reported in E1 and E3), and therefore these equations are coupled. 
Lastly, the maximum likelihood approach above attempts to find the best-fitting B 
that yields an approximate solution, that is, such that residuals are independent and 
normally distributed. In doing so, it can allow species’ true endpoints to be quite 
far from the observed values, such that species may be observed to be present in an 
endpoint but have a predicted endpoint abundance that is negative.

Thus, although the method outlined here can be naively solved using simple 
linear regression, there is no guarantee that the result is accurate, and it can allow 
for results that are inconsistent with the biology of the system (for example, 
species “coexisting” at negative abundances). We therefore must use a method 
that allows us to find a matrix B such that the corresponding set of true endpoints 
z(k) = −(B(k))−11 are as close as possible to the observed x(k) across all replicates and 
communities k.

We present two complementary approaches for estimating B, both of which 
account for the complex error structure and prevent species from coexisting at 
negative abundances.

First, as detailed in the Supplementary Information, one could use a sum-of-
squares approach, which uses numerical optimization to minimize the deviation 
between the observed and predicted endpoints to get a single estimate of B. The 
benefit of this approach is that it correctly handles the error structure by explicitly 
incorporating measurement error. It can also be computationally faster than the 
Bayesian approach, which is detailed next. A drawback to the sum-of-squares 
approach, however, is that it may struggle to find a global maximum, particularly 
if the likelihood surface for B is relatively flat or has many local maxima—a 
fact that is made more complex by the need to invert B (or its submatrices) to 
calculate the endpoint abundances. This method also does not provide a measure 
of the uncertainty or standard error surrounding the coefficients, complicating 
model-selection approaches and preventing one from estimating confidence 
intervals for the resulting abundance predictions ẑðkÞ

I
. Nevertheless, because of 

the computational efficiency of this method, we employ it for the analysis of 
experimental designs for the plant systems and for the simulations, where we are 
primarily interested in goodness of fit of the median value rather than measures  
of uncertainty.

To address the limitations of the sum-of-squares approach, the most rigorous 
method for handling the complex error structure—and the one used to fit the three 
empirical datasets—is a Bayesian Markov chain Monte Carlo (MCMC) approach, 
as detailed next. This method allows for probabilistic inference about coexistence, 
while appropriately handling the complex error structure.

Measurement error model—a Bayesian approach. The Bayesian MCMC 
approach is similar to the sum-of-squares approach, but it yields posterior 
distributions for the elements of B and for each z(k). It allows for standard Bayesian 
model-selection approaches, and can more easily handle relatively flat likelihood 
surfaces, provided the priors are chosen appropriately.

To implement this method, we assume there is some underlying B that gives 
rise to the true endpoints, given by z(k) = −(B(k))−11. The observed x(k) are viewed as 
random variables, sampled with error from some distribution centred at z(k) with a 
vector of standard deviations σ(k).

The basics of this approach are as follows:

	1.	 Assign prior distributions for the coefficients of B = {Bij} and σ = (σ, …, σn)′, 
with the hyperparameters for these distributions encoded in the vector α. 
For the sake of generality, we assume a species-specific standard devia-
tion, but one could assume a constant standard deviation across all species. 
Alternatively, one could make more complex assumptions about both B and 
σ (for example, that they vary smoothly across environments or that they are 
phylogenetically correlated across species).

	2.	 Sample B̂
I

 and σ̂
I

 from these distributions, and predict the equilibrium 
abundance for each observed k by calculating ẑðkÞ ¼ �ðB̂ðkÞÞ�11

I
.

	3.	 If any species is predicted to have a negative abundance for an endpoint 
where it was observed to be present, replace it with an arbitrarily small posi-
tive value (for example, 10−20) to ensure this outcome is assigned a near-zero 
probability of occurrence under a log-normal error structure. Without this 
step, the model would produce unbiological results, whereby species coexist 
at negative abundances. This step can be modified based on the specific error 
structure (for example, if assuming the errors are normally distributed rather 
than log-normal).

	4.	 Calculate the logarithm of the posterior probability for B̂
I

 and σ̂
I

 by sum-
ming the log-probabilities across all endpoints and replicates, following Bayes’ 
theorem:

logPðB̂; σ̂jxð1Þ; ¼ ; xðkÞ; αÞ /
X

k

logPðxðkÞjzðkÞ; σ̂Þ þ logPðB̂; σ̂jαÞ

The specific error structure for the endpoints is encoded in the first prob-
ability term. Thus, to include a log-normal error structure for x(k), as we do 
for the datasets below, we set PðxðkÞjzðkÞ; σ̂Þ

I
 to be the density function of a 

log-normal distribution with parameters z(k) and σ̂
I

.
	5.	 To obtain a posterior distribution for B, repeat this process via MCMC sam-

pling.

For the datasets analysed here, we use the Stan programming language (rstan 
v.2.19.2) to implement the MCMC sampling, called via the stan function in R 
(v.3.6.1) with the default No-U-Turn variant of the Hamiltonian Monte Carlo 
algorithm34,35. For each dataset, we ran four separate MCMC chains for 50,000 
iterations each, with a warm-up of 20,000 iterations and thinning every 40 
iterations. Posterior plots were investigated to ensure proper mixing of the chains, 
and the adaptive-delta parameter was set to 0.85 to minimize divergent transitions. 
See the data-specific sections (Supplementary Information) for the exact priors and 
fitting details for each of the three systems.

Probabilistic inference. The results of this method are posterior distributions for 
B̂
I

, σ̂
I

 and ẑðkÞ
I

, which provide estimates of certainty for each value. We can use 
these posteriors to conduct basic probabilistic inference. For example, for each 
unobserved or out-of-fit assemblage, we can infer the probability of coexistence 
by calculating the proportion of posterior Bs that resulted in all species in the 
assemblage having positive abundance. Note that this probability cannot be 
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estimated for in-fit data because our method requires that observed assemblages be 
predicted to coexist (see Step 3, above). For each experimental system, for example, 
we sampled 1,000 bootstrap estimates from the posterior for B, and calculated 
the probability of coexistence for each assemblage (Supplementary Information). 
With stricter assumptions about the dynamics of the system, one can also infer the 
probability of local and global stability of the fixed points, for both the observed 
and unobserved or out-of-fit assemblages (Extended Data Figs. 1–6).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data and code needed to replicate the central findings of this work are available 
at https://git.io/fjvON
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Extended Data Fig. 1 | Simulation results for a Generalized Lotka-Volterra (GLV) competitive system. For each combination of the four competitors  
(c1 to c4, colours), we ran 96 simulations starting from different initial conditions. Each panel shows the location of the simulations’ endpoints (solid 
circles), as well as the true location of the equilibria for the system (crosses, computed analytically). Experiments resulting in a lack of coexistence are 
represented as half-points at the bottom of the graph. The predictions obtained using our method are reported using open symbols. There are two cases: 
we use circles for predictions of (locally) stable endpoints, and triangles for unstable ones; the stability is calculated under the assumption of Lotka-
Volterra dynamics and equal growth rates. For this system, as expected, we recover a perfect fit for the positive densities. We can also correctly predict the 
lack of coexistence among triplets. We predict perfectly the position of the four-species equilibrium, and correctly classify it as unstable, despite having 
used growth rates that differ substantially from each other.
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Extended Data Fig. 2 | Simulation results for a GLV competitive system exhibiting a limit cycle. Colours and symbols are as in Fig. 17. Notable features 
of this system are: competitors might (c1-c2, c2-c3) or might not (c1-c3, c1-c4) coexist in pairs. However, in one case a feasible but unstable equilibrium 
exists (c1-c3, correctly predicted by our method), while in the other there is no feasible equilibrium (c1-c4, also correctly predicted). The system including 
c1-c3-c4 shows dependence on initial conditions (some trajectories collapse to another system, while others converge to equilibrium), signaling a locally 
(but not globally) stable equilibrium. The method correctly identifies the position of the 4-species equilibrium surrounded by the limit cycle. However, it 
suggests stability for the equilibrium, while it must be unstable to give rise to the stable limit cycle. The misclassification stems from the fact that in the 
calculation of stability, we consider growth rates to be equal (because we cannot infer growth rates from endpoints), while this is not the case here.
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Extended Data Fig. 3 | Simulation results for competition with Allee effects, in which competitors cannot grow when rare. This system exhibits 
multistability in all cases (half-points at the bottom of each graph signal trajectories that resulted in extinctions). Despite the fact that the model contains 
cubic terms (while our method can deal only with quadratic terms), the in-fit is excellent, in all cases fitting the location of the endpoints perfectly. 
Experiments in which the species do not coexist are however misclassified—while there exist equilibria close to the prediction, they are unstable, rather 
than stable as predicted by our method.
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Extended Data Fig. 4 | Simulation results for a system of facultative mutualism between two classes of competitors. Plants are denoted by p, and 
animals are denoted by a. Despite the non-linear functional response, the method predicts the location of the endpoints (all characterized by equilibrium 
dynamics) almost perfectly. The method also correctly predicts the lack of coexistence between the two plants (panel p1-p2).
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Extended Data Fig. 5 | Simulation results for a consumer-resource system. Two resources and two consumers are simulated in all possible combinations, 
giving rise to cases of coexistence at equilibrium, stable limit cycles, or extinctions. In all cases, the proposed method predicts the location of the equilibria 
of the nonlinear system quite perfectly, making the correct inference for all cases in which species cannot coexist.
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Extended Data Fig. 6 | Simulation results for a system characterized by higher-order interactions. Despite the strong effect of HOIs, the recovered 
solution is close to all endpoints. Moreover, the method correctly predicts that coexistence between c1 and c2, or c1, c2 and c3 is precluded. The method 
however predicts coexistence between two triplets, despite simulations showing that either no feasible equilibrium exists, or it is unstable.
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Extended Data Fig. 7 | Quality of fit for different experimental designs. We simulated a 6-species GLV model, in which all 63 possible assemblages 
lead to coexistence. We measured abundances at these endpoints by adding noise, and producing five ‘replicates’. For each design, we use the specified 
number of assemblages to fit the model, and predict out-of-fit the abundance of all species at all other endpoints. Designs that produce qualitatively 
wrong predictions (that is, predicting a lack of coexistence for assemblages that do in fact coexist) are represented as vertical bars at the bottom of each 
boxplot. The horizontal dashed line marks the performance of the monoculture + leave-one-outs design, which fares among the best despite using only 12 
assemblages to predict the remaining 51.
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Extended Data Fig. 8 | The quality-of-fit for the protist system at 15 °C as a function of the sampling day. Rather than sample the community at days 
15-17, as in the main text, we ‘ended’ the experiment at the indicated day, ±2 days, and fit the model with the corresponding endpoints. These results 
demonstrate that there is a clear initial period where the model fits poorly due to transient dynamics; followed by a stable period between days 10 and 20 
where the approach performs well; followed by a period where the quality of fit starts to deteriorate as the species decline in abundances. The point in red 
denotes the point used in the main analysis, independently identified by quantifying when total biomass of the community stabilized.
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