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S U M M A R Y
We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-
source seismic data that uses the arrival times of both refracted and reflected seismic phases
to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface.
This code is based on its popular 2-D version TOMO2D from which it inherited the methods
to solve the forward and inverse problems. The traveltime calculations are done using a hybrid
ray-tracing technique combining the graph and bending methods. The LSQR algorithm is
used to perform the iterative regularized inversion to improve the initial velocity and depth
models. In order to cope with an increased computational demand due to the incorporation of
the third dimension, the forward problem solver, which takes most of the run time (∼90 per
cent in the test presented here), has been parallelized with a combination of multi-processing
and message passing interface standards. This parallelization distributes the ray-tracing and
traveltime calculations among available computational resources. The code’s performance
is illustrated with a realistic synthetic example, including a checkerboard anomaly and two
reflectors, which simulates the geometry of a subduction zone. The code is designed to invert
for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases
involving multiple reflectors, and it is tested for the successive inversion of the two reflectors.
Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step
incorporates the results from previous steps. This strategy poses simpler inversion problems
at each step, allowing the recovery of strong velocity discontinuities that would otherwise be
smoothened.

Key words: Inverse theory; Controlled source seismology; Seismic tomography.

1 I N T RO D U C T I O N

Traveltime tomography is a well-established inverse modelling tech-
nique (e.g. Iyer & Hirahara 1993; Nolet 2008), which has multiple
applications in the investigation of the Earth’s interior. It has been
applied to studies at a broad range of scales as well as for different
data acquisition configurations and exploration methods, such as
refraction and wide-angle reflection seismic surveys, multichannel
seismic reflection records, cross-hole data or passive seismic exper-
iments. The basic principle behind this technique is the ray theory,
which is the high-frequency approximation of seismic wave prop-
agation (Čeverný 2001). Traveltime tomography was first devised
for applications to cross-well (e.g. Bois et al. 1972) and seismolog-
ical data (e.g. Aki & Lee 1976). Since then, traveltime tomography
codes have been developed to invert for velocity using traveltime
picks from either first-arrival refracted phases (e.g. Zhang & Toksöz

1998) or reflected phases (e.g. Pullammanappallil & Louie 1993).
Traveltime tomography has also been adapted to use near-vertical
reflection data to produce velocity and reflector depth models (e.g.
Bishop et al. 1985; Farra & Madariaga 1988). Early implemen-
tations of the joint (i.e. simultaneous) inversion of refraction and
reflection arrivals used a small number of parameters by defining
velocity and depth functionals (Zelt & Smith 1992). The nonlinear
tomography that simultaneously inverts both reflection and refrac-
tion traveltime data was first developed by Zhang et al. (1998) and
is nowadays commonly used. The modelling of reflected phases
caused by impedance contrasts related to geological discontinu-
ities permits the recovery of their geometry. A fundamental ad-
vantage of the combination of both types of phases, besides the
greater number of available data and the consequent enhancement
of ray coverage, is the reduction of the negative effects on the inver-
sion result produced by the ambiguity, inherent to reflection data,
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TOMO3D: refraction and reflection tomography 159

between a reflector’s depth and the velocity distribution above it
(e.g. McCaughey & Singh 1997).

The main differences between traveltime tomography codes are
found in their ray-tracing algorithms. The code of Korenaga et al.
(2000) (TOMO2D), for example, combines the graph (or shortest
path) method (Moser 1991; Cheng & House 1996) with the bend-
ing refinement method in the calculation of ray paths and synthetic
traveltimes (Um & Thurber 1987). The combination of these two
methods is optimal; the bending refinement requires a good ini-
tial guess to avoid local minima in traveltimes and converges to
the global minimum, and the graph solution can serve as such an
initial guess. Modern ray tracing is dominated by wave-front march-
ing methods. Two main families exist: graph solvers (Moser 1991;
Korenaga et al. 2000; Van Avendonk et al. 2001a; Bai et al. 2007)
and finite-differences eikonal equation solvers (Vidale 1988; Kim
2002; Rawlinson & Sambridge 2004). The former finds minimum
traveltime ray paths as a series of node connections following Fer-
mat’s principle, whereas the latter propagates wave fronts from
sources following the eikonal equation and then uses them to trace
back rays. The graph scheme is more flexible in terms of model
parametrization. Irregular grids are straightforward to implement
and geological relief can accurately be represented. For a specific
parametrization, accuracy and efficiency are directly controlled by
a simple definition of the node connections that are permitted. Its
combination with the bending method improves accuracy with a mi-
nor loss in efficiency. In an analogy with eikonal equation solvers,
ray bending would correspond to the back tracing of rays perpen-
dicularly to the wave fronts.

There are also several approaches to the iterative solution of the
nonlinear inversion problem in traveltime tomography. Two popular
techniques in recent literature are regularized inversion and back-
projection (for a detailed review see Rawlinson & Sambridge 2003).
The first formulates the inversion as an optimization problem that
seeks to minimize data misfit together with some constraints in the
form of penalty functions on the roughness and size of the model
perturbations, using a variety of classic gradient methods (e.g. Lut-
ter & Nowack 1990; Sambridge 1990). The second distributes the
traveltime residual among the parameters affected by the ray path
proportionally to the length of their corresponding ray-path segment
(e.g. Hole 1992; Zelt & Barton 1998). Between the two techniques,
the former is more popular, despite being computationally more
expensive, because its convergence behaviour is faster and more
stable.

Technical improvements in acquisition experiments, the prolifer-
ation of research groups with a growing number of recording units
and the increasing number of international collaborative projects
are all favouring the collection of 3-D data in various geological
settings, stimulating the extension of traveltime tomography to 3-D
(e.g. Kissling 1988; Toomey & Foulger 1989; Zelt & Barton 1998;
Koulakov 2009). Among the existing 3-D codes, only a few of them
perform joint refraction and reflection traveltime tomography (Van
Avendonk et al. 2001b; Hobro et al. 2003; Dunn et al. 2005; Rawl-
inson & Urvoy 2006). The code of Van Avendonk et al. (2001b) is
most similar to TOMO3D, but it does not allow for the systematic
investigation of the velocity–depth ambiguity intrinsic to reflection
data, and there are differences in their ray-tracing algorithm. The
code of Hobro et al. (2003) uses a ray-tracing technique (shooting)
whose performance deteriorates with the increasing complexity of
the model, especially in 3-D. The ray-tracing method of Dunn et al.
(2005) (graph or shortest path method) is typically less accurate for
the same computational time or slower for the same target accuracy.
Rawlinson & Urvoy’s (2006) FMTOMO code uses an inversion

solver that is typically used in problems with a small- to moderate-
sized models, although their code has been successfully applied to
the combined modelling of all sorts of active and passive seismic
data. The increasing size of data sets, along with the modelling of
the additional third dimension, results in computationally demand-
ing inversions, creating a need for more efficient algorithms as well
as for parallel computing (Taillandier et al. 2009).

This paper describes our new implementation of 3-D traveltime
tomography with a synthetic example. First, a methodology sec-
tion introduces the new parallel 3-D tomography tool TOMO3D,
which has been developed using the same principles of TOMO2D.
The model parametrization and the treatment of the forward and
inverse problems are described, including some detail of the par-
allelization of the forward problem solver. Next, the code is tested
with a complex synthetic case to evaluate its performance. The
layer-stripping strategy for the inversion of several reflecting inter-
faces is explained and applied to the recovery of two reflectors in
the synthetic example. Finally, we discuss the advantages of this
strategy, which provides an accurate recovery of the sharp veloc-
ity changes associated with reflecting boundaries for realistic and
easy-to-interpret geological models.

2 3 - D J O I N T R E F R A C T I O N A N D
R E F L E C T I O N T R AV E LT I M E
T O M O G R A P H Y

This section provides a methodological and technical description
of the newly implemented code TOMO3D. For further details, see
Meléndez (2014).

2.1 Model parametrization

TOMO3D produces models of the subsurface P-wave velocity struc-
ture as well as of the geometry of energy reflecting boundaries.
Velocity and depth models are represented by independent 3-D and
2-D node meshes, respectively. These meshes are defined by the
spatial coordinates of their nodes, each of which is given a specific
parameter value.

2.1.1 P-wave velocity model

The 3-D velocity mesh (Fig. 1) is defined by the spatial coordinates
of its nodes, and it hangs from the seafloor and the land surface.
The spacing between nodes is variable and the topology of the grid
is cuboidal, and it should be finer than the smallest spatial size
of velocity changes that the model is expected to account for. For
the sake of accuracy, the mesh may include nodes coinciding with
the locations of sources and/or receivers. For instance, in marine
experiments, the grid can be designed to match the locations of all
ocean bottom hydrophones/seismometers.

Each node in the mesh is assigned a value that corresponds to the
P-wave velocity at that particular location in the subsurface. Each
set of eight nodes defining a minimum-volume rectangular cuboid
is called a cell.

The velocity within each cell is found by trilinear interpolation
of the eight nodes (Thurber 1983). Using the local Cartesian cell
coordinates (r, s, t), the interpolated velocity may be expressed as

u (r, s, t)= (1 − r ) · (1 − s) · (1 − t) · u1 + r · (1 − s) · (1 − t) · u2

+ (1 − r ) · s · (1 − t) · u3 + (1 − r ) · (1 − s) · t · u4

+ (1 − r ) · s · t · u5 + r · (1 − s) · t · u6 + r · s · (1 − t) · u7

+ r · s · t · u8, (1)

 at Y
ale U

niversity on O
ctober 8, 2015

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


160 A. Meléndez et al.

Figure 1. Portion of a 3-D velocity sheared mesh with variable spacing
and a vertical shift corresponding to topography and/or bathymetry (black
lines and filled nodes) crossed by a portion of a 2-D depth mesh also with
variable spacing (green lines and empty nodes). Velocity and depth nodes
are independent from each other.

where un is the value of velocity at the node with local index n. In
order to account for geological relief, the mesh definition includes a
vertical shift, b(i,j) in eq. (2), for each (x(i),y(j)) nodal location. This
sort of mesh is commonly known as a sheared mesh (Toomey et al.
1994). The geological relief (b′) at any given position is defined by
the bilinear interpolation

b′ = (1 − r ) · (1 − s) · b (i, j) + r · (1 − s) · b (i + 1, j)

+ (1 − r ) · s · b (i, j + 1) + r · s · b (i + 1, j + 1) . (2)

Note that, because the mesh hangs from the bathymetry (b′ > 0)
or topography (b′ < 0), the velocity model to be estimated does
not include neither water nor air layer, and constant velocities are
assumed for both layers.

2.1.2 Reflector depth model

Similarly, each node in the 2-D depth mesh is attributed the value
of interface depth corresponding to its location (Fig. 1). This depth
mesh is formulated as a floating reflector; its nodes can vary without
modifying the velocity mesh. The velocity discontinuities typically
associated with reflecting interfaces are included following the data-
driven layer-stripping strategy described in Section 3.3.

As with 3-D velocity cells, 2-D depth cells are defined to bilin-
early interpolate the depth at any position as

d (r, s) = (1 − r ) · (1 − s) · d1 + r · (1 − s) · d2

+ (1 − r ) · s · d3 + r · s · d4, (3)

where dn is the depth at the node with local index n, and r and s
denote the local coordinates.

2.2 Forward problem

In TOMO3D, the forward problem is solved using a combination of
two ray-tracing methods: the graph method (Moser 1991) and the
bending method (Moser et al. 1992a; Fig. 2). This hybrid approach
to ray tracing, inherited from Korenaga et al. (2000), is based ex-
clusively on Fermat’s principle and is similar to those presented
by Papazachos & Nolet (1997) and Van Avendonk et al. (1998).
The graph method originates in network theory (e.g. Dijkstra 1959;
Gallo & Pallottino 1986). In a medium represented as a mesh, this
method finds the shortest route from an origin node to all other
nodes as a succession of node connections, sometimes referred to
as polygonal path. The possible connections of each node are limited
to the nodes within the selected definition of neighbourhood, known
as a forward star (FS). Each connection is assigned a measure of
length in a pre-defined unit that works as a weight. If seismic trav-
eltime is chosen as nodal distance (Nakanishi & Yamaguchi 1986),
by Fermat’s principle the graph method can be adapted to ray trac-
ing and used to generate approximate ray paths corresponding to
first-arrival traveltimes. Ray paths of later arrivals corresponding to
reflected waves can also be obtained by imposing a constraint de-
fined as the reflecting surface and applying the graph method twice
(Moser 1991; Zhang et al. 1998; Bai et al. 2010); our code follows
the same procedure as its 2-D version (Korenaga et al. 2000). The
nature of the graph method is such that calculating one ray path is
just as costly as calculating all of them. Considering this and in or-
der to improve efficiency, in a sequential ray-tracing algorithm, one
can apply the reciprocity principle so that the code solves the graph
problem using either sources or receivers as origin nodes depending
on whichever is smaller in number in each particular experiment.
In addition, as the water layer is not part of the velocity model, at
each iteration the path through it is found by selecting the seafloor
node that minimizes the traveltime to the shot location.

The accuracy and efficiency of the graph method are controlled
by the chosen FS that determines the search directions for candidate
ray paths, and by the given mesh parametrization that affects the
local coarseness of polygonal paths. The FS may limit the allowed
connections to nodes in the immediate vicinity of the origin node,
but for a better coverage of ray-path directions it must consider con-
nections to nodes other than the nearest neighbours (Moser et al.
1992b). To improve the accuracy of the graph ray paths, one must
refine the mesh and/or increase the FS. The alternative that we opt
for is to use the polygonal path as initial guess for the bending
method (Moser et al. 1992a; Van Avendonk et al. 1998; Korenaga
et al. 2000). Compared to the pure graph algorithm, for the same
target accuracy, the hybrid approach is generally faster than using
a finer mesh and a higher-order FS, whereas for the same computa-
tional time it is more accurate. It is worth noting that a trade-off in
computational time exists between the graph and bending methods:
a higher-order FS increases the time spent solving the graph prob-
lem but provides a better initial guess that reduces the time spent
refining it in bending. The ideal FS depends on the parametrization
and complexity of the velocity model required in each specific study
case. The hybrid approach is favoured because instead of refining
the entire mesh, bending refinement only involves a small number
of nodes in the mesh, that is, those in the polygonal paths, which
correspond to global traveltime minima within the chosen model
discretization.

Cubic B-spline interpolation is also preferred over the finer
resampling of polygonal paths (e.g. Pereyra et al. 1980; Van
Avendonk et al. 2001a) for several reasons described in Moser
et al. (1992a). For instance, interpolation saves computational time
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TOMO3D: refraction and reflection tomography 161

Figure 2. Scheme depicting the ray-tracing process in a velocity grid with p velocity nodes and a data set with n sources and mi receivers per source. In the
first part of the process, for every source i, the graph problem is applied and its solution, in the form of polygonal paths to every j receiver, is used to create
initial guesses to be refined by the bending method. In this second part, the nodes in these polygonal paths are taken as support points to represent rays using
cubic B-splines. These interpolated rays are refined by adjusting their support points using the conjugate gradient (CG) method to minimize traveltime along
the ray.

because it avoids having to increase the sampling of ray paths to
make them behave correctly in the presence of strong gradients or
especially in low velocity zones. Also, close ray-path points are not
completely independent from each other because ray paths are con-
tinuous curves. In a path resampling scheme, additional constraints
on ray-path points are needed to impose such continuous behaviour.
In contrast, B-spline interpolation requires only a few parameters

to describe complex continuous curves that can later be sampled as
necessary. In other words, the number of points to be perturbed in the
minimization process to adequately modify the ray path is smaller
than the number of points for a sufficiently accurate integration of
traveltime along it. This formulation intrinsically supports the de-
pendency between nearby ray points, and it facilitates the conver-
gence of the conjugate-gradient minimization of traveltime along
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162 A. Meléndez et al.

Figure 3. Traveltime and ray-path misfits for (a, b) refracted and (c, d) reflected data. A discrete plot with 2-D bins is preferred over a smoothened one because
significantly different misfit values are obtained for close locations. The misfit value in each bin is given by the average of misfits for all receivers in that bin.
Bin size is given by the horizontal grid spacing, and the circular distribution of receivers homogeneously scans azimuthal misfit variations. This combination
of squared bins and circular acquisition highlights the azimuthal dependence of our ray-tracing accuracy. This depends on the selected parametrization and FS
definition which inevitably privileges certain directions over others and is ultimately intrinsic to the use of a Cartesian coordinate system. The geometry of the
acquisition configuration includes 640 receivers (black dots) equally distributed in 10 concentric circles and 1 source (red star), all located at the upper face of
the cube. Given this acquisition configuration and the velocity and depth models used in this test, the observed symmetry can be anticipated, and it means that
the code does not present undesirable directional biases.

the ray path. Thus, the bending refinement method as described
in Moser et al. (1992a) is applied to the polygonal paths resulting
from the graph method to produce smooth ray paths. The mesh
nodes forming the polygonal paths are taken as support points to
represent the rays using cubic B-splines, the smoothest B-spline
curves possible as they respect the continuity of the first and sec-
ond derivatives. Excessively long segments produced by high-order
FS are split to include additional support points. Travel time along
interpolated rays is computed and minimized using the conjugate
gradients method. When refining a ray path that interacts with the
seafloor and/or the reflector, the conjugate gradient search must be
constrained. A comparison between polygonal paths and final ray
paths after bending is available as Supporting Information (Fig. S1).

A simple test was performed to check that our implementation
of the hybrid ray-tracing method works correctly and free of any
major coding issue. The velocity model was a 1-D linear velocity
function of depth on a 10-km sided cube with no topography, and

the reflector model was a flat surface at 5 km depth. A node spacing
of 0.5 km was used for both velocity and depth models. For such
model, analytical solutions exist for the ray trajectories and the
associated traveltimes (Sheriff & Geldart 1995) so that misfits can
be computed (Fig. 3). Despite having no 3-D structure this is an
adequate test as vertical velocity changes are dominant in the Earth’s
subsurface. The ray paths calculated with our code for this accuracy
test, along with their corresponding polygonal paths, are shown as
Supporting Information (Fig. S1). Traveltime misfit is obtained as
the difference between analytical and calculated values. Ray-path
misfit is a weighted average expressed as

δp =
√√√√ N∑

i=1

pi · [
(δri )

2 + (δzi )
2]/ N∑

i=1

pi , (4)

where i indicates the ith segment of the calculated ray, δri and δzi

are the horizontal and vertical misfits respectively, and pi is the
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length of that segment. In turn, δri (and equivalently δzi) is defined
as the difference in length between the horizontal projections of the
analytical and calculated trajectories at the ith segment. For both
refractions and reflections, the average ray-path and traveltime mis-
fits are respectively ∼6 m and ∼1 ms. These misfits are satisfactory
considering that the typical node spacing in velocity grids is of
several hundreds of meters and the typical data sampling interval is
∼10 ms.

2.3 Inverse problem

Refraction (δt0
i ) and reflection (δt1

j ) traveltime residuals for a given
slowness (u = 1/v, where v is velocity) and depth model are turned
into parameter perturbations (δu and δz, respectively) following the
integral equations for refracted (�0

i ) and reflected (�1
j ) ray paths

δt0
i =

∫
�0

i

δu d� (5)

δt1
j =

∫
�1

j

δu d� +
[

∂t

∂z

]
(x,y) j

δz (6)

[
∂t

∂z

]
(x,y) j

= 2 · cos θ · cos β

v
(
(x, y) j

) , (7)

where (x,y)j is the reflection point on the interface, θ is the incidence
angle with respect to the interface normal vector, β is the local slope
of the reflector, and v is the velocity at this point (Bishop et al. 1985).
Considering our discretization of the problem, eqs (5) and (6) can
be collectively expressed in the following linear system:⎛
⎝ δt0

δt1

⎞
⎠ =

⎛
⎝ Gu0 0

Gu1 wGz

⎞
⎠

⎛
⎝ δu

1
w
δz

⎞
⎠ (8)

where δt0 and δt1 are, respectively, the vectors of refraction and
reflection traveltime residuals, Gu0, Gu1 and Gz are the Fréchet
derivative matrices (or kernels) for velocity and depth, and δu and
δz are the vectors of parameter perturbations. Kernels are built con-
sidering eqs (5) and (6); both refractions and reflections contribute
to Gu, whereas only reflections contribute to Gz. Each element in
the velocity kernel is the length of the portion of a specific ray path
partitioned to a relevant velocity parameter consistently with the
trilinear interpolation. Similarly, each element in the depth kernel
is the portion of eq. (7) for a specific reflected ray path partitioned
to a relevant depth parameter consistently with the bilinear inter-
polation. The depth-kernel weighting parameter w is described in
Korenaga et al. (2000). Note that w is not an inversion parameter;
its purpose is to explore the inherent velocity–depth trade-off in
reflection data (Korenaga 2011).

Typically, the number of available data is smaller than the number
of model parameters, so the inversion of eq. (8) is conducted with
additional regularization constraints. The program works with three
smoothing matrices for velocity perturbations (Lu), one for each
direction as shown in eq. (9). Similarly, two smoothing matrices
for depth perturbations (Lz) are used. These matrices are built with
correlation lengths that can vary among nodes. The coefficients λu

and λz determine the relative importance of smoothing with respect
to data fit and are selected empirically⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δt0

δt1

0

0

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Gu0 0

Gu1 wGz

λuLuX 0

λuLuY 0

λuLuZ 0

0 wλzLzX

0 wλzLzY

αuDu 0

0 wαzDz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ δu

1
w
δz

⎞
⎠. (9)

Because the initial model is generally far from the true one, this
system of linear equations must be solved iteratively. However, this
could lead to excessively large model perturbations and inversion
instabilities. In such cases, damping constraints on velocity and/or
depth perturbations can be incorporated to stabilize the inversion
(Van Avendonk et al. 1998). Whenever the average perturbation for
velocity and/or depth is found to be greater than the user-defined
limits, the corresponding damping matrix (Du and Dz) is added to
eq. (9). The code automatically finds the appropriate weights, αu

and αz, to keep the average perturbation below this limit.
As in the former 2-D version of the code, all entries in eq. (9)

are normalized to avoid any biases in the final model deriving from
the particular magnitude of either traveltimes or model parameters
(Korenaga et al. 2000). This equation is inverted using the LSQR
algorithm of Paige & Saunders (1982). If a reliable initial model is
accessible by other geophysical means, a jumping strategy can be
selected instead of the default creeping strategy (Backus & Gilbert
1967; Shaw & Orcutt 1985). The post-inversion smoothing at each
iteration remains an available option but is not recommended. In-
stead we favour the approach of Korenaga & Sager (2012) to handle
model roughness.

2.4 Parallelization

In our code, most of the computational time is spent on solving the
forward problem. For instance, in the test case presented in the next
section this part takes an average of ∼90 per cent of the run time
per iteration in the sequential mode. Therefore we prioritized the
parallelization of the forward problem over the inverse problem.

The code is parallelized with a combination of multi-processing
(MP) and message passing interface (MPI) extensions. Taillandier
et al. (2009) presented a parallel 3-D refraction traveltime tomogra-
phy program that used an eikonal-based forward problem solver and
the adjoint-state method in combination with the steepest-decent
minimization for inversion. Our parallelization strategy is rather
intuitive and is conceptually identical to theirs, as our ray-tracing
method also deals with each source independently. The graph prob-
lem is solved simultaneously for as many sources as the available
computational resources allow: each CPU takes care of one source
or more, depending on the number of available CPUs. According
to the seismic reciprocity principle, sources and receivers can be
exchanged in the input data file to minimize computational time
depending on the availability and characteristics of computational
resources and on the ratio between the average computational times
spent in solving one graph and one bending problem for each par-
ticular data set; test iterations can be performed to choose between
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the two configurations. These source assignments are done in the
form of MPI processes. Then bending refinement is performed si-
multaneously for as many rays as possible: each core traces its share
of rays associated with the source(s) assigned to their CPU. These
ray assignments are controlled by MP threads. This avoids the need
for communication between nodes, which would result in higher
computational time. The only significant communication between
CPUs happens when all rays have been traced and partial kernels
for all sources can be added to obtain the total velocity and depth
kernels. A scheme describing the parallelized forward problem is
included as Supporting Information (Fig. S2).

3 S Y N T H E T I C T E S T

We conducted a series of synthetic tests to illustrate the resolv-
ing potential of TOMO3D under favourable conditions in terms of
data acquisition configuration. We proceeded by progressively in-
creasing the complexity of the models to be resolved, and only the
final most complicated example is presented here. All of our tests
included refraction and reflection data and thus inverted for both
velocity and depth parameters. The number of iterations needed to
converge to a final result was typically ∼15.

This test was conducted on 36 CPUs featuring an Intel R© Xeon R©
Processor E5-2670 v2 (25M Cache, 2.50 GHz). Each inversion
step took ∼4 hr when performed sequentially. Since the experiment
includes 36 receivers (treated as sources by the code), the number of
CPUs used corresponds to the optimal parallelization. The number
of cores per CPU is 10, among which ray bending is distributed.
The use of these resources reduced computational time to ∼25 min,
which represents a speed-up factor of ∼9.

3.1 Velocity and depth parametrization and true model

The 3-D velocity grid is a prism with squared upper and lower faces
of 5 km × 5 km and a depth of 3 km. Velocity nodes are spaced at
an interval of 0.125 km in all three spatial dimensions, amounting
to a total of 42 025 nodes. Geological relief was added to the
velocity models with a geometry created by applying a sinusoidal
perturbation to an inclined plane (Figs 4a and b). Concerning the two
reflectors, nodal spacing is 0.5 km resulting in 121 depth nodes. This

test is focused on the recovery of the shallowest two layers, that is,
their velocity distributions and the geometry of their basal reflectors.
These synthetic experiments are straightforward to rescale, and the
results are independent of the specific dimensions of the model. If
the distance unit of the parametrization is multiplied by any factor
and velocity values are kept the same, then new traveltimes are
simply the old ones scaled by that factor.

Here we use z for vertical position in the velocity mesh, and z′

for depth with respect to the sea surface, which are related by b′

from eq. (2) as z = z′ − b′. The true (or target) velocity model is
built starting from the linear velocity function of depth v(z) = 1.6 +
0.5 · z. The geometry of the shallowest true reflector is given by

z′
T 1 (x, y) = z′ (x) − A · sin

×
(

2π ·
√(

(x − x0)2 + (
z′ − z′

0

)2
)
/

(
c1 ·

√(
(
x)2 + (
z′)2)))

· sin (2π · (y − y0) / (c2 · 
y)) , (10)

where z′
T 1 is depth, z′(x) = z′

0 + s · x with s = 0.25 (slope) and
z′

0 = 1 km (depth at origin), A = 0.25 km (amplitude of the per-
turbation), x0 = y0 = 0 km (origin coordinates), c1 = 1, c2 = 0.5
(number of sinus cycles), and 
x = 5 km, 
y = 5 km, 
z′ = 3 km
(model dimensions). The second true reflector (z′

T 2) follows the
same expression but for z′

0 = 1.75 km (Figs 4a and b). With these
two reflectors, the previous velocity model is modified by applying
a velocity shift of −0.25 km/s just beneath each reflector, which can
be expressed as

v′(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

−v(z), z′ < z′
T 1

−v(z) − 0.25, z′
T 1 < z′ < z′

T 2

−v(z) − 0.5, z′ < z′
T 2

. (11)

The construction of the true velocity model is completed after
v′(x, y, z) is perturbed with a checkerboard pattern described by

vT (x, y, z) = v′ (x, y, z) ·
(

1 + 0.01 · A · sin

(
2π · x

lx

)

· sin

(
2π · y

ly

)
· sin

(
2π · z

lz

) )
, (12)

where lx = ly = lz = 2 km, and A = 10 per cent (Fig. 4).

Figure 4. 2-D slices of the true velocity model at (a) x = 1.5 km, (b) y = 1.5 km and (c) z = 750 mbsf with the corresponding 1-D cuts of both true reflectors
(grey lines).
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TOMO3D: refraction and reflection tomography 165

Figure 5. (a) Acquisition geometry with 36 receivers and 441 sources. Black dots mark shot locations and red squares indicate receivers. (b–e) Synthetic
record sections for four sample profiles. These records were generated on slices of our true 3-D velocity model. Applying the reciprocity principle, the 2-D
wavefield was computed for a source at the location of the chosen receiver. Traces were acquired every 25 m along the profile to achieve the lateral coherency
needed to observe the various seismic phases. True (green squares) and inverted (red dots) traveltime picks are plotted to show their correspondence with one
another and with these synthetic seismic phases.

3.2 Acquisition configuration and data set

The acquisition configuration consists of 36 receivers located at the
seafloor and distributed in a squared grid of 6 × 6 receivers with
1 km spacing (Fig. 5a). The 441 sources are spaced 0.25 km and
located 10 m below sea level. This configuration produces 15 876
refraction picks, and this same number of reflection picks for each
of the two reflectors. Typical active-source real data experiments
provide less data than the number of modelling parameters. This

data set in combination with the total number of model parameters
reproduces a rather optimal experimental situation in which the
number of traveltime picks is almost as large as the number of
parameters to be estimated.

The synthetic traveltime picks for this acquisition geometry were
obtained with the same forward problem solver in TOMO3D. Ran-
dom noise of ±5 ms was added to these picks to create the final data
set in order to make our synthetic application even more realistic.
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This traveltime perturbation range of 10 ms was selected to be of
the order of magnitude of the RMS of traveltime residuals for this
same synthetic application with a noise-free data set (∼1.4 ms for
refractions and ∼3.4 ms for reflections); for a satisfactory inversion
RMS values must be close to the average traveltime error. We refer
to these picks as true traveltime picks, and we plotted some of them
on top of their corresponding synthetic record sections generated
with the acoustic version of the 2-D finite-differences elastic wave
solver by Dagnino et al. (2014; Figs 5b–e). The fit between the picks
and the seismic phases is satisfactory and illustrates the robustness
of our 3-D ray-tracing and traveltime calculation method. Possible
mismatches most likely originate from the comparison between 3-D
ray tracing and 2-D wave propagation. This acquisition geometry
covers the two layers of interest but the second one is sampled
mostly by reflections, and ray coverage is nonexistent beneath the
deeper reflector. Fig. 6 shows the ray trajectories corresponding to
the true traveltime picks in Fig. 5.

3.3 Layer-stripping strategy and test results

The purpose of the layer-stripping strategy (Sallarès et al. 2013) is
twofold: (1) to invert for more than one reflector by posing succes-
sive single-reflector inversion problems, and (2) to recover sharp
geological discontinuities that might otherwise appear as smooth
velocity gradients. Accomplishing these purposes generally yields
models that facilitate geological interpretation. This strategy pro-
ceeds by extending the model downwards layer by layer, instead
of concurrently inverting all interfaces, which would pose a de-
manding inverse problem (e.g. codes that invert several reflectors
simultaneously would require multiple depth-kernel scaling param-
eters). The first inversion is devised to recover the velocity within
the first, shallowest layer and the depth of the corresponding reflec-
tor. Subsequently, the area of the inverted velocity model, limited
by the topographic surface at the top and the geometry of the in-
verted reflector at the bottom, is inserted in a new starting model
that extends deeper to include the next reflector. Because we only
invert for one reflector at a time, at each step the reflection picks
in the data set are replaced by those associated with the new re-
flector. If the velocity parameters of the previous inversion result
are significantly altered but there is reason to believe that the result
is nonetheless correct (e.g. in the form of geophysical information
that is external to the inversion process), damping can be applied
to the previously inverted parameters with respect to those in the
new deeper area of the model. In this manner, in order to fit the new
picks, the inversion tends to modify the deeper structure rather than
the formerly inverted shallower structure.

In the first step of the layer-stripping strategy, the starting velocity
model follows the function v(z) = 1.6 + 0.3 · z, whereas the starting
depth model is represented by z′(x) = 1 + 0.2 · x. We set the upper-
most velocity to the correct value considering that in a real case we
could obtain a reasonably good estimate of that value for instance
by forward modelling, drilling or from previous geological knowl-
edge. Likewise, the shallowest portion of the reflecting boundary
can be well determined from bathymetry data or seismic reflection
experiments, so that we correctly set this value as well (i.e. the
seafloor at the trench in real experiments). As shown in Fig. 7, the
velocity and depth recoveries are excellent, especially in the central
area of the model where the data set offers the best ray coverage.
The velocity fit is shown via 2-D vertical and horizontal slices of the
3-D volume. The percentage differences between initial, final and
true velocity models show the correctness of the inverted velocity

distribution. The poor recovery area observed in Fig. 7(i) that stands
out against the rest of the horizontal slice corresponds to the portion
of plane that is beneath the first reflector, and will be well retrieved
after the second step of layer stripping. Outside this particular area,
the highest misfit (Figs 7g–i) values are between 4 per cent and
6 per cent and are limited to small localized zones at the bottom
and edges of the model. For the rest of the volume velocity misfit is
close to 0 per cent with small areas of ∼2 per cent. The fit between
true and final depth model is displayed in Figs 8(a)–(c) and just as
for the velocity model the agreement is satisfactory, in particular
for the central and shallow areas of the reflector, with misfit val-
ues between 0 per cent and 1 per cent (Fig. 8c). The highest misfit
values are around 2 per cent and are again found in small local
areas at the edges of the deepest part of the reflector. Histograms
in Figs 9(a) and (b) show the distribution of refraction and reflec-
tion traveltime residuals before and after inversion proving that the
iterative inversion produces velocity and depth models that explain
the data remarkably well. The combined RMS for this first step is
2.1 ms, with 1.6 ms and 2.5 ms for refraction and reflection picks,
respectively.

In the second step, the reflection picks associated with the first
reflector are replaced by those associated with the second reflector.
Regarding the starting velocity model, the parameters above the
first reflector are set to the result of the first inversion step, while
the parameters beneath it are set to follow v(z) = 1.25 + 0.5 · z so
as to mark a velocity contrast matching this reflector. The starting
reflector is represented by z′(x) = 1.75 + 0.22 · x. As in the first
step certain assumptions have been made. Here we considered that
additional available knowledge allows us to roughly estimate the
velocity value immediately below the boundary. As mentioned be-
fore, in a real experiment this information might be given by some
supplementary geophysical exploration or data processing method
such as an amplitude analysis of the reflection event in the seismic
traces. Similarly, the shallowest position of this second starting re-
flector could be derived from other techniques or well-established
knowledge, in this case on the average oceanic crust. Moreover,
based on the observation of the geometry of the first boundary, one
could decide to slightly increase the slope of the plane defining the
starting depth model for the second boundary.

Fig. 10 displays the result after the second (and in this case
final) step of layer stripping. It was not necessary to damp the
velocity parameters inverted in the first step in relation to those
in the new area of the model because our data set and inversion
parameters proved sufficiently robust to keep the shallower structure
unchanged, while iteratively improving the deeper layer to fit the
newly included reflection data. The recovery of both velocity and
depth parameters is not as good as for the previous layer. This could
be anticipated simply because recovery generally deteriorates with
depth, but also because the new layer is almost only mapped by
reflections (Figs 5b–e), which are intrinsically subject to velocity–
depth ambiguity. Satisfactory misfit values between 0 per cent and
2 per cent are found for the upper half and central areas of the layer
above 2 km depth (Figs 10g–i). At the deeper part of the layer,
velocity is not retrieved correctly although misfit is mostly between
4 per cent and 6 per cent with small localized maxima of up to 8–
10 per cent. The accumulation of higher velocity errors just above
the reflector is characteristic of velocity–depth trade-off. Still, this
effect is mitigated by the fact that we are using wide-angle, instead
of near-vertical reflections, so that there is an acceptable azimuthal
coverage even in this second layer, especially in its upper part. The
velocity fit for the previous layer is also improved, especially at
the central part and around its bottom reflector where misfit is now
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TOMO3D: refraction and reflection tomography 167

Figure 6. Rays corresponding to the true traveltime picks (green squares in Fig. 5). Refracted rays are plotted in green, reflected rays at the first reflector in
blue, and reflected rays at the second reflector in orange. Left and right columns correspond to receivers #20 and #29, respectively. (a, b) Plan view; (c–f)
cross-sections along the horizontal axes. Grey lines indicate the locations of the two reflectors. Note that many reflections occur off the selected vertical planes,
particularly along the y axis.

between 0 per cent and 1 per cent, indicating that the sharp contrast
at this first interface is successfully recovered. Moreover, the values
at the localized areas of highest misfit after the first step (Figs 7g and
h) decreases to between 0 per cent and 2 per cent (Figs 10g and h).

More important, the area beneath the first reflector in Fig. 7(i) is
well recovered after this second step (Fig. 10i).

Consistently with the overall velocity recovery, the checkerboard
pattern is well retrieved for the first layer and partially recovered
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Figure 7. Velocity recovery after layer stripping step 1 illustrated as the percentage differences between 2-D slices of the initial, final and true models. On the
vertical slices the corresponding 1-D cuts of the initial (green lines), final (black dashed lines) and true (grey lines) reflectors are also plotted.

for the second one (Fig. 11). Comparison between the recovered
checkerboard pattern and the original one illustrates the resolution
of the experiment throughout the velocity model. The geometry
of the reflector is adequately retrieved, particularly at the shallow

central region of the interface where misfit is between 0 per cent
and 1 per cent (Fig. 8d–f). The highest misfit values are around
2 per cent and concentrate in small pseudo-circular areas along
model edges and at the deeper region of the reflector (Fig. 8f).
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Figure 8. Recovery of interface geometry after layer stripping (a–c) step 1 and (d–f) step 2 illustrated as the percentage differences in depth between initial,
final and true reflectors.

Also as in the first step, histograms in Figs 9(c) and (d) show the
distribution of refraction and reflection residuals before and after
inversion. In this second step we observed how, as expected for
a robust inversion solution, refraction residuals remain virtually
invariable with respect to the first step. Reflection residuals for the
second reflector, however satisfactory, are not as good as for the
first one, in accordance with the quality of their respective depth
recoveries. The combined RMS for this second step is 3.0 ms, and
1.6 ms and 3.9 ms for refraction and reflection picks, respectively,
and the overall combined RMS is 2.7 ms. Examples of the good
agreement between true and calculated picks can be seen in Figs
5(b)–(e). The inversion parameters used in the two inversion steps
are presented in Table 1.

4 D I S C U S S I O N

The usefulness of TOMO3D has been tested in a complex synthetic
case simulating a subduction zone scenario in which it successfully
resolved the velocity field of the upper and lower layers as well as
the geometry of the boundary and bottom interfaces. First of all,
the precision of the forward problem solver was investigated by

comparing the synthetic ray paths and traveltimes to the analyti-
cal solutions (Fig. 3). The quality of the synthetic data set as well
as of the inversion results was illustrated by plotting the picks on
top of the synthetic record sections generated with a 2-D acoustic
wave propagator showing the satisfactory agreement between in-
verted and true picks, and with their corresponding seismic phases
(Fig. 5).

The successful recovery of the 3-D velocity structure of both
layers as well as of the both 2-D depth interfaces is exemplified by
the corresponding misfits (Figs 7, 8, 10 and 11) and the traveltime
residuals (Fig. 9). Recovery for the lower layer is obviously poorer
than for the upper one. However, an acquisition configuration with
longer offsets would record refracted arrivals corresponding to rays
travelling deeper into the subsurface and improve the recovery of
the lower layer. Here, this lower layer is sampled almost only by re-
flections, which indicates that its recovery would not be possible by
refraction traveltime tomography. The symmetry observed in depth
misfits is expected, given the symmetry defined by the acquisition
configuration, and the true velocity and depth models. Moreover,
this suggests that the final velocity model and its misfits also follow
an analogous symmetry that can be checked by plotting 2-D slices at
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Figure 9. Histograms of initial (green) and final (black) traveltime residuals for (a) refractions and (b) reflections after layer stripping step 1, and (c) refractions
and (d) reflections after step 2.

the appropriate x and y positions. Nonetheless, this synthetic test is
not as nonlinear as a real data inversion, and in that sense it should
be considered as an optimal example of the code’s performance.
Indeed, even if the velocity and depth functions used to build the
initial and true models are different, they are closer to one another
than any initial model can be to the actual 3-D velocity structure
of the subsurface. Regarding initial models, certain reasonable as-
sumptions were considered here, which would also be valid in a real
data study. Ideally though, in a real data case one would like to use
an adaptive importance sampling scheme as described in Korenaga
& Sager (2012), which statistically evaluates pre-defined ranges of
geologically reasonable model parameters. Parallelization and op-
timization of the code are critical to make these computationally
expensive analyses feasible in 3-D.

Additionally, we show our proposed strategy to model impedance
contrasts that may appear at the boundaries between geological
structures. Traveltime tomography velocity models are character-
ized by smooth velocity gradients as opposed to layered models ob-
tained from multichannel seismic data processing or from forward
modelling of wide-angle seismic data. Layer stripping is devised
to introduce and keep such sharp velocity contrasts throughout the
entire inversion process. The synthetic record sections in Fig. 5
show how this strategy is mostly an objective modelling process
when the different reflected seismic phases can be identified in the
record sections. From a technical point of view, inverting for more
than one reflector simultaneously is only a matter of making mi-
nor modifications to the code. The choice of layer stripping is thus
conceptual and seeks to simplify the inverse problem that is posed,
which typically produces models that facilitate interpretation. Nev-
ertheless, trade-off effects can still be present in the joint inversion
of refraction and reflection data, and its quantification is essential in

real data experiments as demonstrated in Korenaga (2011). As with
TOMO2D, the degree of velocity–depth trade-off in the data set and
its influence on the final velocity and depth models can be evaluated
by exploring a range of w values, and to our knowledge, this is the
only published procedure to do so. If inversion results show a strong
dependence on w, then the data set is severely affected by velocity–
depth ambiguity. This sort of assessment becomes crucial in real
data inversions where no true model is available for comparison.

5 C O N C LU S I O N S

TOMO3D is a fully operative, state-of-the-art, parallel code for the
joint inversion of refraction and reflection seismic data that pro-
duces 3-D velocity models of the subsurface and 2-D depth mod-
els representing the geometry of geological reflecting interfaces.
Founded on TOMO2D (Korenaga et al. 2000), TOMO3D incorpo-
rates the same forward and inversion methods extended to work
in 3-D. The code can be downloaded from http://barcelona-csi.
cmima.csic.es/software/tomo3D, along with user and installation
manuals, and it can be used only for academic purposes. Users
should cite this paper when presenting their results. The following
list summarizes the key points of the work presented here:

(1) The hybrid ray-tracing strategy combining the graph and
bending methods provides adequate traveltime and ray-path preci-
sion as proven by comparison with analytical solutions and synthetic
seismograms.

(2) Parallelization of the forward problem is crucial for the prac-
ticality of the program as around 90 per cent of the run time is spent
in this part of the code. The achieved speed up in the particular case
described here is a factor of ∼9.
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Figure 10. Velocity recovery after layer stripping step 2 illustrated as the percentage differences between 2-D slices of the initial, final and true models. On
the vertical slices the corresponding 1-D cuts of the initial (green lines), final (black dashed lines) and true (grey lines) reflectors are also plotted.

(3) The application of layer-stripping strategy in combi-
nation with our joint refraction and reflection inversion
scheme allows for the successive inversion of several re-
flecting boundaries adding sharp contrasts to the otherwise

smoother velocity distributions produced by classic refraction
tomography.

(4) The code can still be improved, for instance by giving
the layer-stripping strategy a certain degree of automation. The
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Figure 11. 2-D slices of the checkerboard pattern (a) at x = 1.5 km, (b) y = 1.5 km and (c) z = 750 mbsf with the corresponding 1-D cuts of both true
reflectors (grey lines). (d–f) Checkerboard pattern recovery after layer stripping step 2 for the same 2-D slices including the corresponding 1-D cuts of both
final reflectors (black dashed lines).

Table 1. Relevant inversion parameters used in the synthetic test (LS stands for
layer stripping). Correlation lengths for the velocity model were set at the top and
bottom nodes of the velocity grid and interpolated for the rest of the nodes in
between. The increase with depth follows from the typical decrease in resolving
power. The second step needed longer correlation lengths for the depth model
because of the poorer ray coverage, particularly due to the lack of refractions
travelling through the deeper parts of the model.

Inversion parameters LS step 1 LS step 2

FS order (x, y, z) (number of nodes) (4,4,4) (4,4,4)
λu 15 11
λz 1 1
Average velocity perturbation limit (%) 10 10
Average depth perturbation limit (%) 10 10
Top velocity correlation lengths (x, y, z) (km) (0.5,0.5,0.5) (0.5,0.5,0.5)
Bottom velocity correlation lengths (x, y, z) (km) (1,1,1) (1,1,1)
Depth correlation lengths (km) (0.5,0.5) (1,1)

inversion solver could be parallelized incorporating a freely avail-
able parallel version of the LSQR algorithm (Lee et al. 2013), and
the parallelization of the ray-tracing method could be extended to a
second level of parallelism in the solution of graph problems.
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this paper:

Figure S1. Polygonal paths and ray trajectories for refractions and
reflections calculated with TOMO3D for the traveltime and ray-path

accuracy test in Fig. 2. Polygonal paths are obtained with the graph
method and then used to build initial guess paths for the bending
method, which produces the refined ray trajectories. Polygonal paths
for refractions are plotted in (a, c, e), and the corresponding refracted
paths after bending are plotted in (b, d, f). Analogously, polygonal
paths for reflections are plotted in (g, i, k), and the corresponding
reflected paths after bending are plotted in (h, j, l). The velocity
model follows a 1-D linear gradient with depth which, together with
the horizontal reflector, explains the symmetry exhibited by the ray
paths.
Figure S2. Forward problem parallelization scheme. The number
of sources (n) is compared to the number of available processors
(k). If k ≥ n, all sources are processed simultaneously. When that
is not the case, the k processors start by taking care of the first
k sources. When processor i has solved the graph problem for its
current source i, it moves on to bend the rays of the correspond-
ing mi receivers equidistributing them among its ji cores. Imme-
diately after this task is completed, a new unsolved source k +
1 is assigned to processor i and so on so forth. This is repeated
until the forward problem is solved for the n sources. Finally, the
partial kernels for the n sources are added to calculate the total
kernel. (http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/
ggv292/-/DC1).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.
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