For citations tracked by Google Scholar, click here.

 Notes:     *student advisee    †postdoctoral advisee     (for work done under advisement)

80.    Eyster, A.E., Fu, R.R., Strauss, J.V., Weiss, B.P., Roots, C.F., Halverson, G.P., Evans, D.A.D. & Macdonald, F.A., 2017.  Paleomagnetic evidence for a 50 degree rotation of the Yukon block relative to Laurentia: Implications for a low-latitude Sturtian Glaciation and the break-up of Rodinia.  Geological Society of America Bulletin, v. 129, p. 38-58.

79.   *Wen, B., Evans, D.A.D. & Li, Y.-X., 2017.  Proterozoic paleogeography of Tarim Block: An extended or alternative “missing-link” model for Rodinia?  Earth and Planetary Science Letters, v. 458, p. 92-106.

78.   †Salminen, J.M., Evans, D.A.D., Trindade, R.I.F., Oliveira, E.P., Piispa, E.J. & Smirnov, A.V., 2016.  Paleogeography of the Congo/São Francisco craton at 1.5 Ga: expanding the core of Nuna supercontinent.  Precambrian Research, v. 286, p. 195-212.

77.   *Kilian, T.M., Chamberlain, K.R., Evans, D.A.D., Bleeker, W. & Cousens, B.L., 2016.  Wyoming on the run – toward final Paleoproterozoic assembly of Laurentia.  Geology, v. 44, p. 863-866.

76.    Evans, D.A.D., Veselovsky, R.V., Petrov, P.Yu., Shatsillo, A. & Pavlov, V.E., 2016.  Paleomagnetism of Mesoproterozoic margins of the Anabar Shield: A hypothesized billion-year partnership of Siberia and northern Laurentia.  Precambrian Research, v. 281, p. 639-655.

75.    Evans, D.A.D., Trindade, R.I.F., *Catelani, E.L., D’Agrella-Filho, M.S., Heaman, L.M., Oliveira, E.P., Söderlund, U., Ernst, R.E., †Smirnov, A.V. & †Salminen, J.M., 2016.  Return to Rodinia? Moderate to high paleolatitude of the São Francisco/Congo craton at 920 Ma.  In: Li, Z.-X., Evans, D.A.D. & Murphy, J.B., eds., Supercontinent Cycles Through Earth History.  Geological Society of London Special Publication, v. 424, p. 167-190.

74.  *Kasbohm, J., Evans, D.A.D., *Panzik, J.E., Hofmann, M. & Linnemann, U., 2016.  Paleomagnetic and geochronologic data from Late Mesoproterozoic redbed sedimentary rocks on the western margin of Kalahari craton.  In: Li, Z.-X., Evans, D.A.D. & Murphy, J.B., eds., Supercontinent Cycles Through Earth History.  Geological Society of London Special Publication, v. 424, p. 145-165.

73.  *Panzik, J.E., Evans, D.A.D., *Kasbohm, J.J., Hanson, R., Gose, W. & DesOrmeau, J., 2016.  Using palaeomagnetism to determine late Mesoproterozoic palaeogeographic history and tectonic relations of the Sinclair Terrane, Namaqua orogen, Namibia.  In: Li, Z.-X., Evans, D.A.D. & Murphy, J.B., eds., Supercontinent Cycles Through Earth History.  Geological Society of London Special Publication, v. 424, p. 119-143.

72.  Pehrsson, S., Eglington, B.M., Evans, D.A.D., Huston, D. & Reddy, S.M., 2016.  Metallogeny and its link to orogenic style during the Nuna supercontinent cycle.  In: Li, Z.-X., Evans, D.A.D. & Murphy, J.B., eds., Supercontinent Cycles Through Earth History.  Geological Society of London Special Publication, v. 424, p. 83-94.

71.  *Kilian, T.M., Bleeker, W., Chamberlain, K., Evans, D.A.D. & Cousens, B., 2016.  Palaeomagnetism, geochronology, and geochemistry of the Palaeoproterozoic Sheep Mountain and Powder River dyke swarms - Implications for Wyoming in supercraton Superia.  In: Li, Z.-X., Evans, D.A.D. & Murphy, J.B., eds., Supercontinent Cycles Through Earth History.  Geological Society of London Special Publication, v. 424, p. 15-45.

70.  Evans, D.A.D., Li, Z.X. & Murphy, J.B., 2016.  Four-dimensional context of Earth’s supercontinents.  In: Li, Z.-X., Evans, D.A.D. & Murphy, J.B., eds., Supercontinent Cycles Through Earth History.  Geological Society of London Special Publication, v. 424, p. 1-14.

69.  Driscoll, P.E. & Evans, D.A.D., 2016.  Frequency of Proterozoic geomagnetic superchrons.  Earth and Planetary Science Letters, v. 437, p. 9-14.

68.  *Wen, B., Evans, D.A.D., Li, Y.-X., Wang, Z. & Liu, C., 2015.  Newly discovered Neoproterozoic diamictite and cap carbonate (DCC) couplet in Tarim Craton, NW China: Stratigraphy, geochemistry, and paleoenvironment.  Precambrian Research, v. 271, p. 278-294.

67.  Planavsky, N.J., Tarhan, L.G., Bellefroid, E.J., Evans, D.A.D., Reinhard, C.T., Love, G.D. & Lyons, T.W., 2015.  Late Proterozoic transitions in climate, oxygen, and tectonics, and the rise of complex life.  In: Polly, P.D., Head, J.J. & Fox, D.L., eds., Earth-Life Transitions: Paleobiology in the Context of Earth System Evolution.  The Paleontological Society Papers, v. 21, p. 47-82.

66.  Smirnov, A.V. & Evans, D.A.D., 2015.  Geomagnetic paleointensity at ~2.41 Ga as recorded by the Widgiemooltha Dike Swarm, Western Australia.  Earth and Planetary Science Letters, v. 416, p. 35-45.

65.  Zhang, S., Li, H., Jiang, G., Evans, D.A.D., Dong, J., Wu, H., Yang, T., Liu, P. & Xiao, Q., 2015.  New paleomagnetic results from the Ediacaran Doushantuo Formation in South China and their paleogeographic implications.  Precambrian Research, v. 259, p. 130-142.

64.  *Panzik, J.E. & Evans, D.A.D., 2014.  Assessing the GAD hypothesis with paleomagnetic data from large Proterozoic dike swarms.  Earth and Planetary Science Letters, v. 406, p. 134-141

63.  *Liu, C., Wang, Z., Raub, T.D., Macdonald, F.A. & Evans, D.A.D., 2014.  Neoproterozoic cap dolostone deposition in a stratified glacial meltwater plume.  Earth and Planetary Science Letters, v. 404, p. 22-32.

62.  Veikkolainen, T., Pesonen, L.J. & Evans, D.A.D., 2014.  PALEOMAGIA: A PHP/MYSQL database of the Precambrian paleomagnetic data.  Studia Geophysica et Geodaetica, v. 58, p. 425-441

61.  *Mitchell, R.N., Bleeker, W., van Breemen, O., LeCheminant, A.N., Peng, P., Nilsson, M.K.M. & Evans, D.A.D., 2014.  Plate tectonics before 2.0 Ga: Evidence from paleomagnetism of cratons within supercontinent Nuna.  American Journal of Science, v. 314, p. 878-894.

60.  †Salminen, J., Mertanen, S., Evans, D.A.D. & Wang, Z., 2014.  Paleomagnetic and geochemical studies of the Mesoproterozoic Satakunta dyke swarms, Finland, with implications for a Northern Europe – North America (NENA) connection within Nuna supercontinent.  Precambrian Research, v.244, p.170-191.

59.  Veikkolainen, T., Evans, D.A.D., Korhonen, K. & Pesonen, L.J., 2014.  On the low-inclination bias of the Precambrian geomagnetic field.  Precambrian Research, v.244, p.23-32.

58.  Evans, D.A.D., 2013.  Reconstructing pre-Pangean supercontinents.  Geological Society of America Bulletin, v. 125, p. 1735-1751.

57.  Calver, C.R., Crowley, J.L., Wingate, M.T.D., Evans, D.A.D., *Raub, T.D. & Schmitz, M.D., 2013.  Globally synchronous Marinoan deglaciation indicated by U-Pb geochronology of the Cottons Breccia, Tasmania, Australia.  Geology, v.41, p. 1127-1130.

56.  Li, Z.-X., Evans, D.A.D. & Halverson, G.P., 2013.  Neoproterozoic glaciations in a revised global paleogeography from the breakup of Rodinia to the assembly of Gondwanaland.  Sedimentary Geology, v. 294, p. 219-232.

55.  Zhang, S., Evans, D.A.D., Li, H., Wu, H., Jiang, G., Dong, J., Zhao, Q., Raub, T.D. & Yang, T., 2013.  Paleomagnetism of Nantuo Formation and paleogeographic implications for the South China Block.  Journal of Asian Earth Sciences, v.72, p.164-177.   PDF

54.  Smirnov, A.V., Evans, D.A.D., Ernst, R.E., Söderlund, U. & Li, Z.-X., 2013.  Trading partners: Tectonic ancestry of southern Africa and western Australia, in supercratons Vaalbara and Zimgarn.  Precambrian Research, v.224, p.11-22.   PDF

53.  Swanson-Hysell, N.L., Maloof, A.C., Kirschvink, J.L., Evans, D.A.D., Halverson, G.P. & Hurtgen, M.T., 2012.  Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Amadeus Basin, central Australia.  American Journal of Science, v.312, p.817-884.   PDF

52.  Zhang, S., Li, Z.-X., Evans, D.A.D., Wu, H., Li, H. & Dong, J., 2012.  Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China.  Earth and Planetary Science Letters, v.353-354, p.145-155.   PDF

51.  *Mitchell, R.N., *Kilian, T.M. & Evans, D.A.D., 2012.  Supercontinent cycles and the calculation of absolute palaeolongitude in deep time.  Nature, v.482, p.208-211.   PDF    Supplement

50. Peppe, D.J., Johnson, K.R. & Evans, D.A.D., 2011.  Magnetostratigraphy of the Lebo and Tongue River Members of the Fort Union Formation (Paleocene) in the northeastern Powder River Basin, Montana.  American Journal of Science, v.311, p.813-850.   PDF

49.  *Mitchell, R.N., *Kilian, T.M., Raub, T.D., Evans, D.A.D., Bleeker, W. & Maloof, A.C., 2011.  Sutton hotspot track: Resolving Ediacaran-Cambrian tectonics and true polar wander of Laurentia.  American Journal of Science, v.311, p.651-663.   PDF

48.  Evans, D.A.D. & *Raub, T.D., 2011.  Neoproterozoic glacial palaeolatitudes: a global update.  In: Arnaud, E., Halverson, G.P. & Shields-Zhou, G., eds., The Geological Record of Neoproterozoic Glaciations.  Geological Society of London Memoirs, v.36, p.93-112.   PDF

47.  †Smirnov, A.V., Tarduno, J.A. & Evans, D.A.D., 2011.  Evolving core conditions ca. 2 billion years ago detected by paleosecular variation.  Physics of the Earth and Planetary Interiors, v.187, p.225-231.   PDF

46.  Evans, D.A.D. & *Mitchell, R.N., 2011.  Assembly and breakup of the core of Paleo-Mesoproterozoic supercontinent Nuna.  Geology, v.39, p.443-446.   PDF

45.  Li, Z.-X. & Evans, D.A.D., 2011.  Late Neoproterozoic 40° intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia.  Geology, v.39, p.39-42.   PDF

44.  Evans, D.A.D. & Halls, H.C., 2010.  Restoring Proterozoic deformation within the Superior craton.  Precambrian Research, v.183, p.474-489.   PDF   TableA1.xls

43.  Evans, D.A.D., 2010.  Proposal with a ring of diamonds.  Nature, v.466, p.326-327.   PDF

42.  *Mitchell, R.N., Evans, D.A.D., & *Kilian, T.M., 2010.  Rapid Early Cambrian rotation of Gondwana.  Geology, v.38, p.755-758.   PDF

41.  Bindeman, I.N., Schmitt, A.K. & Evans, D.A.D., 2010.  Limits of hydrosphere-lithosphere interaction: Origin of the lowest d18O silicate rock on Earth in the Paleoproterozoic Karelian rift.  Geology, v.38, p.631-634.   PDF

40.  *Mitchell, R.N., Hoffman, P.F. & Evans, D.A.D., 2010.  Coronation loop resurrected: Oscillatory apparent polar wander of Orosirian (2.05-1.8 Ga) paleomagnetic poles from Slave craton.  Precambrian Research, v.179, p.121-134.   PDF

39.  Evans, D.A.D., 2009.  The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction.  In: Murphy, J.B., Keppie, J.D. & Hynes, A., eds., Ancient Orogens and Modern Analogues.  Geological Society of London Special Publication, v.327, p.371-404.   PDF

38. Swanson-Hysell, N.L., Maloof, A.C., Weiss, B.P. & Evans, D.A.D., 2009.  No asymmetry in geomagnetic reversals recorded by 1.1-billion-year-old Keweenawan basalts.  Nature Geoscience, v.2, p.713-717.   PDF

37. Denyszyn, S.W., Halls, H.C., Davis, D.W. & Evans, D.A.D., 2009.  Paleomagnetism and U-Pb geochronology of Franklin dykes in High Arctic Canada and Greenland: A revised age and paleomagnetic pole constraining block rotations in the Nares Strait region.  Canadian Journal of Earth Sciences, v.46, p.689-705.   PDF

36.  Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Evans, D.A.D., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K. & Vernikovsky, V., 2009.  How not to build a supercontinent: A reply to J.D.A. Piper.  Precambrian Research, v.174, p.208-214.   PDF

35.  †De Kock, M.O., Evans, D.A.D. & Beukes, N.J., 2009.  Validating the existence of Vaalbara in the Neoarchaean.  Precambrian Research, v.174, p.145-154.   PDF

34.  Payne, J.L., Hand, M., Barovich, K.M., Reid, A. & Evans, D.A.D., 2009.  Correlations and reconstruction models for the 2500-1500 Ma evolution of the Mawson Continent.  In: Reddy, S.M., Mazumder, R., Evans, D.A.D. & Collins, A.S., eds., Palaeoproterozoic Supercontinents and Global Evolution.  Geological Society of London Special Publication v.323, p.319-355.   PDF

33.  Eglington, B.M., Reddy, S.M. & Evans, D.A.D., 2009.  The IGCP 509 Database System: Design and application of a tool to capture and illustrate litho- and chrono-stratigraphic information for Palaeoproterozoic tectonic domains.  In: Reddy, S.M., Mazumder, R., Evans, D.A.D. & Collins, A.S., eds., Palaeoproterozoic Supercontinents and Global Evolution.  Geological Society of London Special Publication v.323, p.27-47.   PDF

32.  Reddy, S.M. & Evans, D.A.D., 2009.  Palaeoproterozoic supercontinents and global evolution: Correlations from core to atmosphere.  In: Reddy, S.M., Mazumder, R., Evans, D.A.D. & Collins, A.S., eds., Palaeoproterozoic Supercontinents and Global Evolution.  Geological Society of London Special Publication v.323, p.1-26.   PDF

31. Kendall, B., Creaser, R.A., Calver, C.R., *Raub, T.D. & Evans, D.A.D., 2009.  Correlation of Sturtian diamictite successions in southern Australia and northwestern Tasmania by Re-Os black shale geochronology and the ambiguity of “Sturtian”-type diamictite - cap carbonate pairs as chronostratigraphic marker horizons.  Precambrian Research, v.172, p.301-310.   PDF

30.  †De Kock, M.O., Evans, D.A.D., Kirschvink, J.L., Beukes, N.J., *Rose, E. & Hilburn, I., 2009.  Paleomagnetism of a Neoarchean-Paleoproterozoic carbonate ramp and carbonate platform succession (Transvaal Supergroup) from surface outcrop and drill core, Griqualand West region, South Africa.  Precambrian Research, v.269, p.80-99.   PDF

29.  *Peppe, D.J., Evans, D.A.D. & Smirnov, A.V., 2009.  Magnetostratigraphy of the Ludlow Member of the Fort Union Formation (Lower Paleocene) of the Williston Basin in North Dakota.  Geological Society of America Bulletin, v.121, p.65-79.   PDF

28.  †De Kock, M.O., Evans, D.A.D., Gutzmer, J., Beukes, N.J. & Dorland, H.C., 2008.  Origin and timing of BIF-hosted high-grade hard hematite deposits – a paleomagnetic approach.  In: Hagemann, S., Rosiere, C., Gutzmer, J. & Beukes, N., eds., BIF-Related High-Grade Iron Mineralization.  Reviews in Economic Geology, v.15, p.49-71.   PDF

27.  Evans, D.A.D. & Pisarevsky, S.A., 2008.  Plate tectonics on early Earth? – weighing the paleomagnetic evidence.  In Condie, K. & Pease, V., eds., When Did Plate Tectonics Begin?  Geological Society of America Special Paper, v.440, p.249-263.   PDF

26.  *Raub, T.D., Kirschvink, J.L. & Evans, D.A.D., 2007.  True polar wander: Linking deep and shallow geodynamics to hydro- and bio-spheric hypotheses.  In: Kono, M., ed., Treatise on Geophysics, Volume 5: Geomagnetism (Amsterdam, Elsevier), p.565-589.   PDF

25.  *Raub, T.D., Evans, D.A.D. & †Smirnov, A.V., 2007.  Siliciclastic prelude to Elatina deglaciation: Lithostratigraphy and rock magnetism of the base of the Ediacaran System.  In: Vickers-Rich, P. & Komarower, P., eds., The Rise and Fall of the Ediacaran Biota.  Geological Society of London Special Publication v.286, p.53-76.   PDF

24.  Pettersson, Å, Cornell, D.H., Moen, H.F.G., Reddy, S. & Evans, D., 2007.  Ion-probe dating of 1.2 Ga collision and crustal architecture in the Namaqua-Natal Province of southern Africa.  Precambrian Research, v.158, p.79-92.   PDF

23.  Evans, D.A.D., 2006. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes.  Nature, v.444, p.51-55.   PDF   First compilation of paleomagnetic data from all evaporite deposits in Earth history, and confirmation of their expected distribution in the subtropics. Quantitative refutation of the high-obliquity hypothesis for Precambrian time.

22.  *De Kock, M.O., Evans, D.A.D., *Dorland, H.C., Beukes, N.J. & Gutzmer J., 2006.  Paleomagnetism of the lower two unconformity bounded sequences of the Waterberg Group, South Africa: Towards a better-defined apparent polar wander path for the Paleoproterozoic Kaapvaal Craton.  South African Journal of Geology, v.109, p.157-182.   PDF   Presentation of paleomagnetic poles from ~2.05 and ~1.95 Ga redbeds on the Kaapvaal craton. Establishment of a large loop in the Kaapvaal apparent polar wander path between 2.05 and 1.88 Ga.

21.  *Dorland H.C., Beukes N.J., Gutzmer J., Evans, D.A.D. & Armstrong R.A., 2006.  Precise SHRIMP U-Pb age constraints on the lower Waterberg and Soutpansberg Groups, South Africa.  South African Journal of Geology, v.109, p.139-156.   PDF   Presentation of ~2.05 Ga ages for early redbed successions, and development of a chronostratigraphic correlation model of unconformity-bounded sequences following emplacement of the Bushveld igneous complex.

20.  Peterson K.J., McPeek M. & Evans D.A.D., 2005.  Tempo and mode of early animal evolution: Inferences from rocks, Hox, and molecular clocks.  In: Vrba E.S. & Eldredge N., eds, Macroevolution: Diversity, Disparity, Contingency: Essays in Honor of Stephen Jay Gould, Paleobiology, v.31, supplement to no.2, p.36-55.   PDF   Review of molecular clock estimates of early animal evolution, in the context of recent advances in Ediacaran stratigraphy and correlation. Development of the model that origination of the animal “gut” spurred rapid evolution of all animal clades into the Cambrian “explosion” of diversity.

19.  Li Z.X., Evans D.A.D. & Zhang S., 2004.  A 90° spin on Rodinia: Causal links among the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation.  Earth and Planetary Science Letters, v.220, p.409-421.   PDF   Presentation of the ~800 Ma Xiaofeng Dykes paleomagnetic pole, and development of a model whereby the Sturtian global glaciation is a consequence of intense silicate weathering (CO2 drawdown) of volcanic rocks erupted in tropical latitudes associated with Rodinia breakup.

18.  Evans D.A.D., Sircombe K., Wingate M.T.D., Doyle M., Pidgeon R.T., *McCarthy M. & *Van Niekerk H.S., 2003.  Revised geochronology of magmatism in the western Capricorn orogen at 1805-1785 Ma:  Diachroneity of the Pilbara-Yilgarn collision.  Australian Journal of Earth Sciences, v.50, p.853-864.   PDF   Presentation of ~1.8 Ga SHRIMP U-Pb ages for volcanic rocks and a granite suite along the southern margin of the Pilbara craton in Western Australia.  Development of the foreland basin model for the Ashburton Basin, implying collision of about that age.

17.  Evans D.A.D., 2003.  A fundamental Precambrian-Phanerozoic shift in Earth’s glacial style?  Tectonophysics, v.375, p.353-385.   PDF   Summary of paleolatitudes and age constraints for all known pre-Pleistocene glacial deposits.  Review and analysis of proposed causes of glaciation through Earth history, and speculation that more complex ecosystem feedbacks following the Cambrian radiation of animals inhibited runaway climate feedbacks during Phanerozoic time. Contribution to a memorial volume in honor of the life and career of Chris McA. Powell.

16.  Evans D.A.D., 2003.  True polar wander and supercontinents.  Tectonophysics, v.362, p.303-320.  PDF   Development of the conceptual model for TPW through the supercontinent cycle, following paper #6 (Evans, 1998; below). Contribution to a festschrift in honor of Rob Van der Voo.

15.  Wingate M.T.D. & Evans D.A.D., 2003.  Palaeomagnetic constraints on the Proterozoic tectonic evolution of Australia.  In: Yoshida M., Windley B. & Dasgupta S., eds, Proterozoic East Gondwana: Super Continent Assembly and Break-up, Geological Society of London Special Publication 206, p.77-91.   PDF   Discussion of Proterozoic conjunction versus separation of the three Australian cratons.

14.  Pisarevsky S.A., Wingate M.T.D., Powell C.McA., Johnson S. & Evans D.A.D., 2003.  Models of Rodinia assembly and fragmentation.  In: Yoshida M., Windley B. & Dasgupta S., eds, Proterozoic East Gondwana: Super Continent Assembly and Break-up, Geological Society of London Special Publication 206, p.35-55.   PDF   Review of Rodinia reconstructions and development of a new, paleomagnetically viable, global model.

13.  Evans D.A.D., Beukes N.J. & Kirschvink J.L., 2002.  Paleomagnetism of a lateritic paleo-weathering horizon and overlying Paleoproterozoic redbeds from South Africa: implications for the Kaapvaal apparent polar wander path and a confirmation of atmospheric oxygen enrichment.  Journal of Geophysical Research, v.107(B12), doi: 10.1029/2001JB000432.   PDF   Presentation of paleomagnetic poles from the ~2.1 Ga Gamagara Formation, the ~1.93 Ga Hartley lavas, and a ~1.2 Ga Namaqua orogen overprint.  Postive conglomerate test on hematitic pebbles of laterized iron formation implying oxic atmosphere at ~2.1 Ga.

12.  Wingate M.T.D., Pisarevsky S.A. & Evans D.A.D., 2002.  Rodinia connections between Australia and Laurentia: no SWEAT, no AUSWUS?  Terra Nova, v.14, p.121-128.   PDF   Presentation of the ~1070 Ma Bangemall sills (subsequently included in the Warakurna large igneous province) paleomagnetic pole from Western Australia, and introduction of the AUSMEX juxtaposition of Australia and Laurentia in Rodinia.

11.  Evans D.A.D., Gutzmer J., Beukes N.J. & Kirschvink J.L., 2001.  Paleomagnetic constraints on ages of mineralization in the Kalahari Manganese Field, South Africa.  Economic Geology, v.96, p.621-631.   PDF   Presentation of the Mamatwan and Wessels paleomagnetic poles, implying stages of Mn ore formation during orogenic events at ~1.9 and ~1.1 Ga.

10.  Evans D.A.D., 2000.  Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox.  American Journal of Science, v.300, p.347-433.    PDF   Global compilation of predominantly low to moderate paleolatitudes for Neoproterozoic glacial deposits. Superseded by paper #48 (Evans and Raub, 2011; above).

9.  Martin M.W., Grazhdankin D.V., Bowring S.A., Evans D.A.D., Fedonkin M.A. & Kirschvink J.L., 2000.  Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: Implications for metazoan evolution.  Science, v.288, p.841-845.   PDF   Presentation of the ~555 Ma U-Pb zircon age from the Winter Coast section bearing important Ediacara biota.

8.  Evans D.A.D., Li Z.X., Kirschvink J.L. & Wingate M.T.D., 2000.  A high-quality mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia.  Precambrian Research, v.100, p.313-334.    PDF   Presentation of the ~750 Ma Liantuo Formation paleomagnetic pole from the South China block.

7.  Mound J.E., Mitrovica J.X., Evans D.A.D. & Kirschvink J.L., 1999.  A sea-level test for inertial interchange true polar wander events.  Geophysical Journal International, v.136, p.F5-F10.   PDF   Numerical simulations of relative sea-level response to TPW of varying speed and duration.

6.  Evans D.A., 1998.  True polar wander, a supercontinental legacy.  Earth and Planetary Science Letters, v.157, p.1-8.   PDF   Incorporation of the putative Cambrian and mid-Paleozoic TPW oscillations into a coherent model of TPW through the supercontinent cycle.

5.  Evans D.A., Ripperdan R.L. & Kirschvink J.L., 1998.  Polar wander and the Cambrian; response.  Science, v.279, p.9, correction p.304.   PDF   Response to a technical comment on the Kirschvink et al. 1997 Science paper on Cambrian TPW.

4.  Kirschvink J.L., Ripperdan R.L. & Evans D.A., 1997.  Evidence for a large-scale reorganization of Early Cambrian continental masses by inertial interchange true polar wander.  Science, v.277, p.541-545.   PDF   Provocative hypothesis of Cambrian TPW: 90° in 15 million years, proposed to disrupt ocean circulation patterns profoundly, and thereby spur animal diversification.

3.  Evans D.A., Beukes N.J. & Kirschvink J.L., 1997.  Low-latitude glaciation in the Palaeoproterozoic era.  Nature, v.386, p.262-266.   PDF   First robust paleomagnetic determination of tropical glaciation prior to Neoproterozoic time.  Presentation of the ~2220 Ma Ongeluk paleomagnetic pole from the Kaapvaal craton.

2.  Evans D.A., Zhuravlev A.Yu., Budney C.J. & Kirschvink J.L., 1996.  Palaeomagnetism of the Bayan Gol Formation, western Mongolia.  Geological Magazine, v.133, p.487-496.   PDF   Presentation of magnetostratigraphic data from the Cambrian reference section in the Dzabkhan Basin. Contribution to a special volume on that section.

1.  Baldridge W.S., Ferguson J.F., Braile L.W., Wang B., Eckhardt K., Evans D., Schultz C., Gilpin B., Jiracek G.R. & Biehler S., 1994.  The western margin of the Rio Grande Rift in northern New Mexico: An aborted boundary?  Geological Society of America Bulletin, v.106, p.1538-1551.  PDF   Synthesizes seismic and geologic data from the SAGE program (Summer of Applied Geophysical Experience), to produce a new model for late Cenozoic rifting in northern New Mexico.