Google Scholar:




Star (*) indicates the first author is Fedorov’s PhD student or postdoc

124. Fedorov, A.V., Hu, S., Wittenberg, A., Levine, A. and C. Deser, 2020: ENSO low-frequency modulation and mean state interactions. In El Niño Southern Oscillation in a Changing Climate (M.J. McPhaden, A. Santoso, W. Cai, ed.).  Wiley, 173-198.

123*. Liu W. and Fedorov A.V., 2021: Oceans and rapid climate change. In From Hurricanes to Epidemics (K. Conrad, ed.). Springer, 67-80.

122. Fedorov A.V. and J. Brown, 2009: Equatorial waves. In Encyclopedia of Ocean Sciences, Second Edition (J. Steele, K. Turekian, and S. Thorpe, ed.), Academic Press, 3679-3695.

121. Fedorov A.V., 2008: Ocean-atmosphere coupling. In The Oxford Companion to Global Change (A. Goudie and D.Cuff, ed.). Oxford University Press, 369-374.

120. Fedorov A.V. and Melville, W.K. 1998: Breaking internal waves and fronts in rotating fluids. In Physical processes in lakes and oceans (J. Imberger, ed.). AGU, 251-260.



111*. Heede, U.K., and Fedorov, A.V., 2023. A stronger Walker circulation and colder eastern equatorial Pacific in the early 21st century: separating the forced response of the climate system from natural variability. GRL, e2022GL101020

110*. Li, R., Studholme, J., Fedorov, A.V., Storelvmo, T., 2023: Increasing precipitation efficiency amplifies climate sensitivity by enhancing tropical circulation slowdown and eastern Pacific warming pattern. GRL, e2022GL100836


109*. Studholme, J., Fedorov, A.V., Gulev, S., Emanuel, K., Hodges, K., 2022: Poleward expansion of tropical cyclone latitudes in warming climates. Nature Geoscience 15, 14-28.

108. Ford, H.L., Burls, N., Caballero, R., Fedorov, A.V., Hodell, D., Jacobs, P., Jahn, A., 2022: Sustained mid-Pliocene warmth led to deep water formation in the North Pacific. Nature Geoscience 15, 658-663.

107*. Li, R., Studholme, J., Fedorov, A.V., Storelvmo, T., 2022: Precipitation efficiency constraint on climate change. Nature Climate Change 12, 642-648.

106*. Li, Z. and Fedorov, A.V., 2022: Coupled dynamics of the North Equatorial Countercurrent and Intertropical Convergence Zone with relevance to the double-ITCZ problem. PNAS 119, e2120309119

105*. Liang, Y. and Fedorov, A.V., 2022. Excitation of the Madden‐Julian Oscillation in response to surface warming in SPCAM.  GRL.

104*. Ferster, B.S., Fedorov, A.V., Mignot, J. and Guilyardi, E., 2022: Slowdown and recovery of the Atlantic meridional overturning circulation and a persistent North Atlantic warming hole induced by Arctic sea ice decline. Geophysical Research Letters, e2022GL097967

103. Zheng, Y., Fedorov, A.V., Burls, N.J., Zhang, R., Brierley, C., Fang, Z., Yu, X., Xian, F. and Lu, H., 2022: Severe drought conditions in northern East Asia during the early Pliocene caused by weakened Pacific meridional temperature gradient. Geophysical Research Letters 49, e2022GL098813

102. Hill, S., Burls, N.J., Fedorov, A.V. and Merlis, T., 2022: Symmetric and antisymmetric components of polar-amplified warming. Journal of Climate, 1-49.

101*. Yu, S. and Fedorov, A.V., 2022: The essential role of westerly wind bursts in shaping ENSO characteristics and extreme events in model “wind stress shaving” experiments. Journal of Climate, 1-62.

100*. Liu, W. and Fedorov, A.V., 2022: Interaction between Arctic sea ice and the Atlantic meridional overturning circulation in a warming climate. Climate Dynamics, 58, 1811–1827.


99. Shankle, M.G., Burls, N., Fedorov, A.V., Thomas, M., Penman, D.E., Ford, H.L., Jacobs, P., Liu, W., Planavsky, N.J., and Hull, P.M., 2021: Pliocene decoupling of equatorial Pacific temperature and pH gradients. Nature 598, 457–461

98*. Heede, U.K., and Fedorov, A.V., 2021. Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nature Climate Change 11, 696–703.

97*. Liang, Y., Fedorov, A.V. and Haertel, P., 2021. Intensification of westerly wind bursts caused by the coupling of the Madden‐Julian Oscillation to SST during El Niño onset and development. Geophysical Research Letters48(9), p.e2020GL089395.

96*. Liang, Y., Fedorov, A.V., Zeitlin, V. and Haertel, P., 2021. Excitation of the Madden‐Julian Oscillation in atmospheric adjustment to equatorial heating. J. of Atmos. Sciences, 78, 3933-3950.

95*. Liang, Y. and Fedorov, A.V., 2021. Linking the Madden–Julian Oscillation, tropical cyclones and westerly wind bursts as part of El Niño development. Climate Dynamics, 57, 1039-1060.

94*. Zhao, B., Zeitlin, V. and Fedorov, A.V., 2021. Equatorial modons in dry and moist-convective shallow-water systems on a rotating sphere. Journal of Fluid Mechanics916.

93*. Thomas, M.D., Fedorov, A.V., Burls, N.J. and Liu, W., 2021. Oceanic Pathways of an Active Pacific Meridional Overturning Circulation (PMOC). Geophysical Research Letters48, p.e2020GL091935.

92*. Heede, U.K., Fedorov, A.V. and Burls, N.J., 2021. A stronger versus weaker Walker: understanding model differences in fast and slow tropical Pacific responses to global warming. Climate Dynamics, 57, 2505–2522

91*. Ferster, B.S., Fedorov, A.V., Mignot, J. and Guilyardi, E., 2021: Sensitivity of the Atlantic meridional overturning circulation and climate to tropical Indian Ocean warming. Climate Dynamics, 57, 2433–2451.

90*. Li, H. and Fedorov, A.V., 2021: Persistent freshening of the Arctic Ocean and changes in the North Atlantic salinity caused by Arctic sea ice decline. Climate Dynamics, 57, 2995–3013.

89*. Li, H., Fedorov, A. and Liu, W., 2021. AMOC stability and diverging response to Arctic sea ice decline in two climate models. J. of Climate34, 5443-5460.


88*. Hu, S., and Fedorov, A.V., 2020: Indian Ocean warming as a driver of the North Atlantic warming hole. Nature communications11, 4785

87*. Liu, W., Fedorov, A.V., Xie, S.-P.  and Hu, S., 2020: Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate., Science Advances, 6, eaaz4876.

86*. Yu, S. and Fedorov, A.V., 2020: The role of westerly wind bursts during different seasons versus ocean heat recharge in the development of extreme El Niño in climate models. Geophysical Research Letters47, p.e2020GL088381.

85*. Heede, U.K., Fedorov, A.V. and Burls, N.J., 2020. Time Scales and Mechanisms for the Tropical Pacific Response to Global Warming: A Tug of War between the Ocean Thermostat and Weaker Walker. Journal of Climate33, 6101-6118.

84*. Shi, J., Fedorov, A.V. and Hu, S., 2020: A Sea Surface Height Perspective on El Niño Diversity, Ocean Energetics, and Energy Damping Rates. Geophysical Research Letters47, p.e2019GL086742.

83*. Zhao, B. and Fedorov, A., 2020: The seesaw response of the intertropical and South Pacific convergence zones to hemispherically asymmetric thermal forcing. Climate Dynamics54, 1639-1653.

82*. Zhao, B. and Fedorov, A., 2020. The effects of background zonal and meridional winds on ENSO in a coupled GCM. Journal of Climate33, 2075-2091.


81*. Hu, S., and Fedorov, A.V., 2019: Indian Ocean warming can strengthen the Atlantic meridional overturning circulation. Nature Climate Change 9, 747-751.

80. Weijer, W., Cheng, W., Drijfhout, S. S., Fedorov, A.V., Hu, A., Jackson, L. C., et al. (2019). Stability of the Atlantic Meridional Overturning Circulation: A review and synthesis. J. Geophys. Res.: Oceans, 124, 5336–5375.

79*. Shi, J., Fedorov, A.V. and Hu, S. 2019: North Pacific temperature and precipitation response to El Niño-like equatorial heating: sensitivity to forcing location. Climate Dyn.,

78*. Li, R.L., Storelvmo, T., Fedorov, A.V., and Choi, Y.-S., 2019: A positive iris feedback: insights from climate model simulations with temperature-sensitive cloud-rain conversion. J. Climate. 32, 5305-5324.

77. Liu, J., Tian, J., Liu, Z., Herbert, T., Fedorov, A.V, and Lyle, M. 2019: Pacific cold tongue evolution since the late Miocene linked to extratropical climate. Science Advances 5.

76*. Thomas, M. and Fedorov, A.V., 2019: Mechanisms and impacts of an AMOC partial recovery under climate change forcing. GRL 46, 3308-3316.

75*. Liu, W., Fedorov, A.V. and Sevellec, F. 2019: The mechanisms of the Atlantic meridional overturning circulation slowdown induced by Arctic sea ice decline. J. Climate, 32, 977–996.

74*. Liu, W. and Fedorov, A.V. 2019: Global impacts of Arctic sea ice decline mediated by Atlantic meridional overturning circulation. GRL,


73*. Hu, S., and Fedorov, A.V., 2018: The impact of cross-equatorial winds on El Niño diversity and change. Nature Climate Change 8, 798-802.

72*. Liu, W., Lu, J., Xie, S.P. and Fedorov, A., 2018. Southern Ocean heat uptake, redistribution, and storage in a warming climate: The role of meridional overturning circulation. Journal of Climate31, pp.4727-4743.

71. Fedorov, A.V., Muir, L., Boos, W., and J. Studholme, 2018: Tropical cyclogenesis in warm climates: simulations with a cloud-system resolving model. Climate Dynamics,

70. Germe, A., Sévellec, F., Mignot, J., Fedorov, A.V., Nguyen, S., and Swingedouw, D., 2018: The impacts of oceanic deep temperature perturbations in the North Atlantic on decadal climate variability and predictability. Climate Dynamics, doi:


69*. Sévellec, F. and Fedorov, A.V., and W. Liu, 2017: Arctic sea ice decline weakens the Atlantic meridional overturning circulation. Nature Climate Change 7, 604-610.

68*. Burls, N., and Fedorov, A.V., 2017: Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. PNAS. 114, 12888-12893.

67*. Muir, L. and Fedorov, A.V., 2017: Evidence of the AMOC interdecadal mode related to westward propagation of temperature anomalies in CMIP5 models. Climate Dynamics 48, 1517-1535.

66*. Sévellec, F. and Fedorov, A.V., 2017: Predictability and decadal variability of the North Atlantic ocean state. J. Climate 30, 477-498

65*. Burls, N., Fedorov, A.V., Sigman, D.M., Jaccard, S.L., Tiedemann, R. and Haug, G.H., 2017: Active Pacific meridional overturning (PMOC) during the warm Pliocene. Science Advances 3: e1700156.

64*. Thomas, M. and Fedorov, A.V., 2017: The eastern subtropical Pacific origin of the equatorial cold bias in climate models: a Lagrangian perspective. J. Climate 30, 5885-5900.

63. Huang, A., Sriver, R.L., Fedorov, A.V., and Brierley, C.M., 2017: Regional variations in the ocean response to tropical cyclones:  cooling by mixing versus warming by low cloud suppression. GRL. 44, 1947-1955.

62*. Hu, S., and Fedorov, A.V., 2017: The extreme El Niño of 2015-2016 and the end of global warming hiatus, GRL 44, 3816–3824.

61*. Hu, S. and Fedorov, A.V., 2017: The extreme El Niño of 2015-2016: the role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Climate Dynamics, doi: 10.1007/s00382-017-3531-2

60*. Burls, N.J., Muir, L., Vincent, E.M. and Fedorov, A., 2017. Extra-tropical origin of equatorial Pacific cold bias in climate models with links to cloud albedo. Climate Dynamics49, 2093-2113.


59. Williams, R.H., McGee, D.M., Kinsley, C.W., Ridley, D.A., Hu, S., Fedorov A.V., Tal, I., Murray, R.W. and deMenocal, P.B., 2016: Glacial to Holocene changes in trans-Atlantic Saharan dust transport and dust-climate feedbacks. Science Advances 2, 1-11.

58*. Hu, S. and Fedorov, A.V., 2016: An exceptional easterly wind burst stalling El Niño of 2014. PNAS 113, 2005-2010

57*. Pinones, M.A. and Fedorov, A.V., 2016: Projected decline of Antarctic krill spawning habitat by the end of the 21st century. GRL 43, 8580–8589

56*. Brierley, C. and Fedorov, A.V., 2016: Comparing the impacts of Miocene–Pliocene changes in inter-ocean gateways on climate: Central American Seaway, Bering Strait, and Indonesia. EPSL 444, 116-130.

55*. Sévellec, F. and Fedorov, A.V., 2016: AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport? Climate Dynamics 47, 1497-1513.

54. Boos, W., Muir, L. and Fedorov, A.V., 2016: Convective self-aggregation and tropical cyclogenesis under the hypohydrostatic rescaling. J. Atm. Sciences 73, 525–544.


53. Fedorov, A.V., Burls, N., Lawrence, K. and Peterson, L., 2015: Tightly linked ocean zonal and meridional temperature gradients over geological timescales. Nature Geoscience 8, 975–980.

52*. Sévellec, F., and Fedorov, A.V. 2015: Unstable AMOC during glacial intervals and millennial variability: The role of mean sea ice extent. EPSL 429, 60-68.

51. Melville, W.K. and Fedorov, A.V.  2015: The equilibrium dynamics and statistics of gravity-capillary waves. J. Fluid. Mech. 767, 449-466.

50*. Brierley, C., Burls, N., Ravelo, A.C. and Fedorov, A.V., 2015: Pliocene warmth and gradients. Nature Geoscience 8, 419-420.

49*. Sévellec, F., and Fedorov, A.V., 2015: Optimal excitation of AMOC decadal variability: Links to the subpolar ocean. Progress in Oceanography 132, 287-304


48. Ravelo, A.C. Fedorov, A.V., Lawrence, K., and Ford, H., 2014: Comment on “A 12-million-year temperature history of the tropical Pacific Ocean”. Science 346, 1467-1468

47*. Muir, L. and Fedorov, A.V., 2014: How the AMOC affects SST on decadal to centennial timescales: the North Atlantic versus an interhemispheric seesaw. Climate Dynamics 45, 151-16.

46*. Burls, N. and Fedorov, A.V., 2014: Simulating Pliocene warmth and a permanent El Niño‐like state: The role of cloud albedo. Paleoceanography 29, 893-910.

45*. Hu, S., Fedorov, A.V., Lengaigne, M., and Guilyardi, E., 2014: The role of westerly wind bursts in diversity and predictability of El Niño events: an ocean energetics perspective, GRL 41, 4654-4663.

44. Fedorov, A.V., Hu, S., Lengaigne, M., and Guilyardi, E., 2014: The role of westerly wind bursts and ocean initial state in the development and diversity of El Niño events, Climate Dynamics 39, 1-21.

43*. Manucharyan, G. and Fedorov, A.V. 2014: Robust ENSO across climates with different east-west equatorial SST gradients. J. Climate 27, 5836-5850.

42*. Burls, N. and Fedorov, A.V., 2014: What controls the equatorial east-west SST gradient: the role of cloud albedo. J. Climate 27, 2757-2778.

41*. Sévellec, F., and Fedorov, A.V., 2014: Millennial variability in an idealized ocean model: predicting the AMOC regime shifts. J. Climate 27, 3551-3564.


40. Fedorov, A.V., Lawrence, K., Liu, Z, Brierley, C., Dekens, P. and Ravelo, A.C. 2013: Patterns and mechanisms of early Pliocene warmth. Nature 496, 43-49.

39*. Haertel, P., Straub, K. and Fedorov, A.V., 2013: Lagrangian Overturning and the Madden-Julian Oscillation. Q. J. Roy. Meteorol. Soc. 140, 1344-1361.

38*. Sévellec, F., and Fedorov, A.V. 2013: Model bias and the limits of oceanic decadal predictability: importance of the deep ocean. J. Climate 26, 3688–3707.

37*. Sévellec, F., and Fedorov, A.V. 2013: The leading, interdecadal eigenmode of the Atlantic meridional overturning circulation in a realistic ocean model. J. Climate 26, 2160-2183.


36. Rohling, E.J., Sluijs, A., Dijkstra, H.A., Köhler, P., van de Wal, R.S.W., von der Heydt, A.S., Beerling, D.J., Berger, A., Bijl, P.K., Crucifix, M., DeConto, R., Drijfhout, S.S., Fedorov, A.V. and co-authors, 2012: Making sense of paleoclimate sensitivity, Nature 497, 683-691.

35*. Haertel, P., and Fedorov, A.V. 2012: The Ventilated Ocean: stratification and overturning in an ocean with a fully adiabatic interior. J. Phys. Oceanography 42, 141-164.

34. Guilyardi, E., Cai, W., Collin, M., Fedorov, A.V., Jin, F.-F., Kumar, A., Sun, D.-Z, Wittenberg A., 2012: New strategies for evaluating ENSO processes in climate models. Bull. Amer. Meteor. Soc. 93, 235–238.


33*. Brierley, C. and Fedorov A.V. 2011: Tidal mixing around Indonesia and the Maritime continent: implications for paleoclimate simulations. GRL 38, 24703-24710.

32*. Manucharyan, G., Brierley, C. and Fedorov A.V., 2011: Climate impacts of intermittent ocean mixing induced by tropical cyclones. JGR-Oceans 116, 11038-11050.

31*. Sévellec, F., and Fedorov, A.V. 2011: Stability of the Atlantic meridional overturning circulation in a zonally-averaged ocean model: the effects of freshwater, wind and diapycnal diffusion. Deep-Sea Research, 1927-1943.

30*. Brown J., Fedorov, A.V., and Guilyardi, E., 2011: How well do coupled models replicate ocean energetics relevant to ENSO? Climate Dynamics  36, 2147-2158.


29. Fedorov, A.V., Brierley, C., and Emanuel, K, 2010: Tropical cyclones and permanent El Nino in the early Pliocene epoch. Nature 463, 1066-1070.

28*. Sévellec, F. and Fedorov, A.V. 2010: Excitation of SST anomalies in the eastern equatorial Pacific by oceanic optimal perturbations.  J. Marine Research 68, 597-624.

27. Fedorov, A.V., 2010: Ocean response to wind variations, warm water volume, and simple models of ENSO in the low-frequency approximation. J.Climate 23, 3855-3873.

26*. Brierley, C., and Fedorov, A.V., 2010: Relative importance of meridional and zonal SST gradients for the onset of the Ice Ages and Pliocene-Pleistocene climate evolution. Paleoceanography 25, doi: 10.1029/2009PA001809.

25*. Brown J. and Fedorov, A.V., 2010: How much energy is transferred from the winds to the thermocline on ENSO timescales. J. Climate 23, 1563–1580.

24*. Brown J. and Fedorov, A.V., 2010: Estimating the diapycnal transport contribution to Warm Water Volume variations in the tropical Pacific ocean. J.Climate 23, 221-237.


23*. Brierley, C., Fedorov A.V., Liu, Z., Herbert, T., Lawrence, K., LaRiviere, J., 2009: Greatly expanded tropical warm pool and weaker Hadley circulation in the early Pliocene, Science 323, 1714-117.

22. Guilyardi, E., Wittenberg, A., Fedorov, A.V., Collins, M., Wang, C., Capotondi, A., van Oldenborgh, G.-J.  and Stockdale, T., 2009: Understanding El Niño in ocean-atmosphere general circulation models. Bull. Amer. Meteorological Society, 90, 325–340.

21. Fedorov, A.V. and Melville, W.K. 2009: A model for strongly-forced wind waves. J. Phys. Oceanography. 39, 2502-2522.


20*. Brown J. and Fedorov, A.V., 2008: Mean energy balance in the tropical ocean, J. Marine Research, 66, 1-23.

19. Barreiro, M., Fedorov, A.V. and co-authors, 2008: Abrupt climate changes: How the freshening of the northern Atlantic affects the thermohaline and wind-driven oceanic circulations. Ann. Rev. of Earth and Planetary Sciences 36, 33-58.


18. Fedorov, A.V. 2007: Net energy dissipation rates in the tropical ocean and ENSO dynamics. J.Climate 20, 1099–1108.

17. Fedorov, A.V., Barreiro, M., R.C. Pacanowski, Boccaletti, G. and Philander, S.G., 2007: The freshening of surface waters in high latitudes: effects on the thermohaline and wind-driven circulations. J. Phys.Oceanography. 37, 896–907.


16. Fedorov, A.V., Dekens, P., Ravelo, C., deMenocal, P., Pacanowski, R.C. and Philander, S.G., 2006: The Pliocene Paradox (Mechanisms for a permanent El Niño). Science 312, 1437-1443.

15. Barreiro, M., Pacanowski, R.C., Philander, S.G. and Fedorov, A.V., 2005: Simulations of warm tropical conditions with application to middle Pliocene atmospheres. Climate Dynamics 26, 349-365.

14. Fedorov, A.V., Pacanowski, R.C., Philander, S.G. and Boccaletti, G., 2004:  The effect of salinity on the wind-driven circulation and the thermal structure of the upper ocean. J. Phys. Oceanography. 34, 1949-1966.

13. Boccaletti, G., Pacanowski, R.C., Philander, S.G., and Fedorov, A.V., 2004: The thermal structure of the upper ocean. J. Phys. Oceanography 34, 888-902.

12. Philander, S.G.H. and Fedorov, A.V. 2003: Is El Niño sporadic or cyclic? Ann. Rev. of Earth and Planetary Sciences 31, 579-594.

11. Fedorov, A.V., Harper, S.L., Winter, B. and Wittenberg, A., 2003: How predictable is El Niño? Bull. Amer. Meteorol. Soc. 84, 911-919.

10. Philander, S.G. and Fedorov, A.V., 2003:  The role of tropics in changing the response to Milankovitch forcing some three million years ago. Paleoceanography 18, doi:10.1029/2002PA000837.

9. Fedorov, A.V., 2002: The response of the coupled tropical ocean-atmosphere to westerly wind bursts. Q. J. Roy. Meteorol. Soc. 128, 1-23.

8. Fedorov, A.V. and Philander, S.G., 2001: A stability analysis of the tropical ocean-atmosphere interactions: Bridging Measurements of, and Theory for El Niño. J. Climate 14, 3086-3101.

Before 2000

7. Fedorov, A.V. and Philander, S.G., 2000:  Is El Niño changing? Science 288, 1997-2002.

6. Fedorov, A.V. and Melville, W.K. 2000: Kelvin fronts on the equatorial thermocline. J.Phys. Oceanography 30, 1692-1705.

5. Fedorov, A.V., Melville, W.K. and Rozenberg, A. 1998: Experimental and numerical study of parasitic capillary waves. Phys. Fluids 10, 1315–1323.

4. Fedorov, A.V. and Melville, W. K. 1998: Nonlinear gravity-capillary waves with forcing and dissipation. J.Fluid Mech. 354, 1-42.

3. Fedorov, A.V. and Melville, W.K. 1996: Hydraulic jumps at boundaries in rotating fluids. J.Fluid Mech. 324, 55-82.

2. Fedorov, A.V. and Melville, W.K. 1995. Propagation and breaking of nonlinear Kelvin waves. J. Phys.Oceanogr. 25, 2519-2531.

1. Fedorov, A.V. and Malomed, B.A. 1992: Generation of flexural waves on a quasi-one-dimensional KP soliton. Wave Motion 15, 221-227.


Hu, S., and Fedorov, A. V., 2017: An interplay between westerly and easterly wind bursts shaping El Niño development in 2014-2016. U.S. CLIVAR Exchanges 71, 26-30.

Di Lorenzo, E., H. Zhang, A. Clement, B. Anderson, and A.V. Fedorov, 2013: Extra-tropical precursors of ENSO flavors. U.S. CLIVAR Variations 11, 14-18.