Publications

Link to profile on Google Scholar.

(*denotes graduate advisee; **denotes undergraduate advisee; ^denotes postdoctoral advisee)

I. Peer-reviewed papers

124. Masis Arce, R.*, Karabinos, P., Long, M. D., 2024. Structure of the crust in the Northern Appalachian Mountains: Detailing the abrupt change in crustal thickness in north-western Massachusetts. Geochemistry, Geophysics, Geosystems, in press.

123. Bourke, J.^, Long, M. D., Link, F.^, Karabinos, P., Webb, L., Luo, Y.*, Espinal, K.*, Masis Arce, R.*, Li, Y., 2024. Crustal thickness, Moho sharpness, and crustal Vp/Vs beneath the northeastern U.S.: Insights into past orogenic processes. Geological Society of London special volume: Structure and Evolution of Laurussian Orogens in Europe and North America from Geophysical Investigations, in press.

122. Wolf, J.*, Li, M.,  Long, M. D., 2024. Redistribution of low-velocity heterogeneities through subduction-driven flow in the deep mantle beneath North America. Earth and Planetary Science Letters, 624, 118867, doi:10.1016/j.epsl.2024.118867. [PDF]

121. Wolf, J.*,  Long, M. D., Frost, D., Nissen-Meyer, T., 2024. The expression of mantle seismic anisotropy in the global seismic wavefield. Geophysical Journal International, 238, 346-363, doi:10.1093/gji/ggae164. [PDF]

120. Wolf, J.*, Li, M., Long, M. D., Garnero, E., 2024. New insights into deep mantle dynamics from the measurement and interpretation of seismic anisotropy. Reviews of Geophysics, 62, e2023RC000833, doi:10.1029/2023RG000833R. [PDF]

119. Wolf, J.*, Long, M. D., 2024. Splitting of ScS waves due to lowermost mantle anisotropy: Challenges and new global measurements. Seismica, 3(1), doi:10.26443/seismica.v3i1.1128. [PDF]

118. Frost, D. A., Garnero, E., Creasy, N., Bozdag, E., Wolf, J.*, Long, M. D., Aderoju, A., Vite, R., 2024. Heterogeneous mantle effects on the behavior of SmKS waves and outermost core imaging. Geophysical Journal International, in press, doi:10.1093/gji/ggae135. [PDF PREPRINT]

117. Loeberich, E.^, Long, M. D., 2024. Follow the trace: Becoming a seismo-detective with a campus-based Raspberry Shake seismometer. Seismological Research Letters, in press.

116. Wolf, J.*, Li, M., Haws, A. A.*, Long, M. D., 2024. Strong seismic anisotropy due to upwelling flow at the root of the Yellowstone mantle plume. Geology, doi:10.1130/G59191.1. [PDF]

115. Wolf, J.*, Long, M. D., Frost, D. A., 2024. Slab-driven transport of ultra-low velocity material in the deep mantle. Nature Geoscience, 17, 302-308. [PDF]

114. Link, F.^, Long, M. D., 2024. SITomo - A toolbox for splitting intensity tomography and application to the European Alps. Journal of Geodynamics, 159, 102018, doi:10.1016/j.jog.2024.102018. [PDF]

113. Long, M. D., 2024. Evolution, modification, and deformation of continental lithosphere: Insights from the eastern margin of North America. Annual Review of Earth and Planetary Sciences, 52, 549-580, doi:10.1146/annurev-earth-040522-115229. [PDF]

112. Luo, Y.*, Long, M. D., Karabinos, P., Rondenay, S., Masis Arce, R., 2023. First-order transition in Appalachian orogenic processes revealed by along-strike variation of the Moho geometry. Journal of Geophysical Research, 128, e2023JB027024, doi:10.1029/2023JB027024. [PDF]

111. Luo, Y.*, Long, M. D., Link, F.^, Karabinos, P., Kuiper, Y., 2023. Layered anisotropy beneath southern New England from anisotropy-aware receiver function analysis: Past tectonics and present-day mantle flow. Geochemistry, Geophysics, Geosystems, 24, e2023GC011118, doi:10.1029/2023GC011118. [PDF]

110.  Haws. A. A.*, Long, M. D., Luo, Y.*, 2023. Anisotropic structure of normally-dipping and flat-slab segments of the Alaska subduction zone: Insights from receiver function analysis. Tectonophysics, 868, 230112, doi:10.1026/j.tecto.2023.230112. [PDF]

109. Wolf, J.*, Long, M. D., Li, M., Garnero, E., 2023. Global compilation of deep mantle anisotropy observations and possible correlation with low velocity provinces. Geochemistry, Geophysics, Geosystems, 24, e2023GC011070, doi:10.1029/2023GC011070. [PDF]

108. Wolf, J.*, Long, M. D., 2023. Upper mantle anisotropy and flow beneath the Pacific Ocean revealed by differential PS-SKS splitting. Geophysical Research Letters, 50, e2023GL104402, doi:10.1029/2023GL104402. [PDF]

107. Liu, S., King, S. D., Long, M. D.,  Benoit, M. H., Aragon, J. C., 2023. Receiver function analysis reveals lateral variations in temperature and water content in the mantle transition zone beneath eastern North America. Geophysical Research Letters, 50, e2022GL101965, doi:10.1029/2022GL101965. [PDF]

106. Wolf, J.*, Long, M. D., 2023. Lowermost mantle structure beneath the central Pacific Ocean: Ultra-low velocity zones and seismic anisotropy. Geochemistry, Geophysics, Geosystems, 24, e2022GC010853, doi:10.1029/2022GC010853. [PDF]

105. Mittal, V.*, Long, M. D., Evans. R. L., Byrnes, J. S., Bezada, M., 2023. Joint modeling of seismic and electrical anomalies beneath the Central Appalachians requires partial melt in the upper mantle. Geochemistry, Geophysics, Geosystems, 24, e2022GC010690, doi:10.1029/2022GC010690. [PDF]

104. Wolf, J.*, Long, M. D., Frost, D. A., Garnero, E., Aderojou, A., Creasy, N., Bozdag, E., 2023. Observations of mantle seismic anisotropy using array techniques: Shear wave splitting of beamformed SmKS phases. Journal of Geophysical Research: Solid Earth, 128, e2022JB025556, doi:10.1029/2022JB025556. [PDF]

103. Wolf, J.*, Long, M. D., Creasy, N., Garnero, E., 2023. On the measurement of Sdiff splitting due to lowermost mantle anisotropy. Geophysical Journal International, 233, 900-921 doi:10.1093/gji/ggac490. [PDF]

102. Pisconti, A., Creasy, N.*, Wookey, J., Long, M. D., Thomas, C., 2023 (online in 2022). Mineralogy, fabric, and deformation domains in D” across the southwestern border of the African LLSVP. Geophysical Journal International, 232, 705-724, doi:10.1093/gji/ggac359. [PDF]

101. Wolf, J.*, Long, M. D., 2022. Slab-driven flow at the base of the mantle beneath the northeastern Pacific Ocean. Earth and Planetary Science Letters, 594, 117758, doi:10.1016/j.epsl.2022.117758. [PDF

100.  Luo, Y.*, Long, M. D., Rondenay, S., Karabinos, P., Kuiper, Y. D., 2022. Wavefield migration imaging of Moho geometry and upper mantle structure beneath southern New England. Geophysical Research Letters, 49, e2022GL099013, doi:10.1029/2022GL099013. [PDF]

99. Gao, H., Long, M. D., 2022. Tectonics and geodynamics of the Cascadia subduction zone. Elements, 18(4), 226-231, doi:10.2138/gselements.18.4.226. [PDF]

98. Goldhagen, G., Ford, H. A., Long, M. D., 2022. Evidence for a lithospheric step and pervasive lithospheric thinning beneath southern New England. Geology, 50, 1078-1082, doi:10.1130/G50133.1. [PDF]

97. Wolf, J.*, Long, M. D., Leng, K., Nissen-Meyer, T., 2022. Constraining deep  mantle anisotropy with shear wave splitting measurements: Challenges and new measurement strategies. Geophysical Journal International, 230, 507-527, doi:10.1093/gji/ggac055. [PDF]

96. Loberich, E., Long, M. D., Wagner, L. S., Qorbani, E., Bokelmann, G., 2021. Constraints on olivine deformation from SKS shear-wave splitting beneath the southern Cascadia subduction zone back-arc. Geochemistry, Geophysics, Geosystems, 22, e2021GC010091, doi:10.1029/2021GC010091. [PDF]

95. Creasy, N.*, Pisconti, A., Long, M. D., Thomas, C., 2021. Modeling of seismic anisotropy observations reveals plausible lowermost mantle flow directions beneath Siberia. Geochemistry, Geophysics, Geosystems, 22, e2021GC009924, doi:10.1029/2021GC009924. [PDF]

94. Long, M. D., Wagner, L. S., Evans, R. L., King, S. D., Mazza, S. E., Byrnes, J. S., Gazel, E., Johnson, E. A., Kirby, E., Bezada, M., Miller, S., Aragon, J. C., Liu, S., 2021. Evaluating models for lithospheric loss and intraplate volcanism beneath the Central Appalachian Mountains. Journal of Geophysical Research, 126, e2021JB022571, doi:10.1029/2021JB022571. [PDF]

93. Wolf, J.*, Long, M. D., Nissen-Meyer, T., Leng, K., 2022 (online in 2021). Sensitivity of SK(K)S and ScS phases to heterogeneous anisotropy in the lowermost mantle from global wavefield simulations. Geophysical Journal International, 228, 366-386, doi:10.1093/jig/ggab347. [PDF]

92. Luo, Y.*, Long, M. D., Karabinos, P., Kuiper, Y., Rondenay, S., Aragon, J. C., Sawade, L., Makus, P., 2021. High-resolution Ps receiver function imaging of the crust and mantle lithosphere beneath the Southern New England Appalachians. Journal of Geophysical Research, 126, e2021JB022170, doi:10.1029/2021JB022170. [PDF]

91. Lopes, E.**, Long, M. D., Karabinos, P., Aragon, J. C., 2020. Shear wave splitting and upper mantle anisotropy beneath the southern New England Appalachians: Constraints from the dense SEISConn array. Geochemistry, Geophysics, Geosystems, 21, e2020GC009401, doi:10.1029/2020GC009401. [PDF]

90. Gao, H., Yang, X. Long, M. D., Aragon, J. C., 2020. Seismic evidence for crustal modification beneath the Hartford Basin, southern New England. Geophysical Research Letters, 47, e2020GL089316, doi:10.1029/2020GL089316. [PDF]

89. Wagner, L. S., Caddick, M., Kumar, A., Beck, S. L., Long, M. D., 2020. Effects of oceanic crustal thickness on intermediate depth seismicity. Frontiers in Earth Science, 8, 244, doi:10.3389/feart.2020.00244. [PDF]

88. Long, M. D., Aragon, J. C., 2020. Probing the structure of the crust and mantle lithsophere beneath the southern New England Appalachians via the SEISConn deployment. Seismological Research Letters, 91, 2976-2986. [PDF]

87. Long, M. D., Benoit, M. H., Evans, R. L., Aragon, J. C., Elsenbeck, J., 2020. The MAGIC experiment: A combined seismic and magnetotelluric deployment to investigate the structure, dynamics, and evolution of the central Appalachians. Seismological Research Letters, 91, 2960-2975. [PDF]

86. Lutz, K.**, Long, M. D., Creasy, N.*, Deng, J.*, 2020. Seismic anisotropy in the lowermost mantle beneath North America from SKS-SKKS splitting intensity discrepancies. Physics of the Earth and Planetary Interiors, 305, 106504, doi:10.1016/j.pepi.2020.106504. [PDF]

85. Tesoniero, A.^, Leng, K., Long, M. D., Nissen-Meyer, T., 2020. Full-wave sensitivity of SK(K)S phases to arbitrary anisotropy in the upper and lower mantle. Geophysical Journal International, 222, 412-435, doi:10.1093/gji/ggaa171. [PDF

84. Creasy, N.*, Miyagi, L., Long, M. D., 2020. A library of elastic tensors for lowermost mantle anisotropy studies and comparison with seismic observations. Geochemistry, Geophysics, Geosystems, 21, e2019GC008883, doi:10.1029/2019GC008883. [PDF]

83. Mondal, P.*, Long, M. D., 2020. Strong seismic anisotropy in the deep upper mantle beneath the Cascadia backarc: Constraints from probabilistic finite-frequency SKS splitting intensity tomography. Earth and Planetary Science Letters, 539, 116172, doi:10.1016/j.epsl.2020.116172. [PDF]

82. Servali, A.*, Long, M. D., Park, J., Benoit, M. H., Aragon, J. C., 2020. Love-to-Rayleigh scattering across the Eastern North American Margin. Tectonophysics, 776, 228321, doi:10.1016/j.tecto.2020.228321. [PDF]

81. Lynner, C., van Avandonk, H. J. A., Becel, A., Benoit, M. H., Christeson, G. L., Dugan, B., Gaherty, J. B., Harder, S., Hornbach, M. J., Lizzarralde, D., Long, M. D., Magnani, M. B., Shillington, D. L., Aderhold, K., Eilon, Z. C., Wagner, L. S., 2020. The Eastern North American Margin Community Seismic Experiment: An amphibious active- and passive-source dataset. Seismological Research Letters, 91, 533-540, doi:10.1785/0220190142. [PDF]

80. Reiss, M. C.^, Long, M. D., Creasy, N.*, 2019. Lowermost mantle anisotropy beneath Africa from differential splitting of SKS-SKKS phases. Journal of Geophysical Research, 124, doi:10.1029/2018JB017160. [PDF]

79. Wolf, J.**, Creasy, N.*, Long, M. D., Thomas, C., 2019. An investigation of seismic anisotropy in the lowermost mantle beneath Iceland. Geophysical Journal International, 219, S152-S166, doi:10.1093/gji/ggz312. [PDF]

78. Byrnes, J., Bezada, M., Long, M. D., Benoit, M. H., 2019. Thin lithosphere beneath the central Appalachian Mountains: Constraints from seismic attenuation beneath the MAGIC array. Earth and Planetary Science Letters, 519, 297-307. [PDF]

77. Evans, R. L., Benoit, M. H., Long, M. D., Elsenbeck, J., Ford, H. A., Zhu, J., Garcia, X., 2019. Thin lithosphere beneath the central Appalachian Mountains: A combined seismic and magnetotelluric study. Earth and Planetary Science Letters, 519, 308-316. [PDF]

76. Long, M. D., Benoit, M. H., Aragon, J. C.**, King, S. D., 2019. Seismic imaging of mid-crustal structure beneath central and eastern North America: Possibly the elusive Grenville deformation? Geology,  47, 371-374. [PDF]

75. Creasy, N.*, Pisconti, A., Long, M. D., Thomas, C., Wookey, J., 2019. Constraining lowermost mantle anisotropy with body wave data sets: A synthetic modeling study. Geophysical Journal International, 217, 766-783. [PDF]

74. Bar, N.*, Long, M. D., Wagner, L. S., Beck, S. L., Zandt, G., Tavera, H., 2019. Receiver function analysis reveals layered anisotropy in the crust and upper mantle beneath Peru and Bolivia. Tectonophysics, 753, 93-110, doi:10.1016/j.tecto.2019.01.007. [PDF]

73. Mondal, P.*, Long, M. D., 2019. A model space search approach to finite-frequency SKS splitting intensity tomography in a reduced parameter space. Geophysical Journal International, 217, 238-256, doi:10.1093/gji/ggz016. [PDF]

72. Bercovici, D., Mulyukova, E., Long, M. D., 2018. A simple toy model for coupled retreat and detachment of subducting slabs. Journal of Geodynamics, doi:10.1016/j.jog.2018.03.002. [PDF]

71. Bishop, B. T., Beck, S. L., Zandt, G., Wagner, L. S., Long, M. D., Tavera, H., 2018. Foreland uplift during flat subduction: Insights from the Peruvian Andes and Fitzcarrald Arch. Tectonophysics, 731-732, 73-84. [PDF]

70. Levin, V., Long, M. D., Skryzalin, P., Li, Y., Lopez, I.**, 2018. Seismic evidence for a recenty formed mantle upwelling beneath the New England Appalachians. Geology, 46, 87-90, doi:10.1130/G39641.1. [PDF]

69. Aragon, J. C.**, Long, M. D., Benoit, M. H., 2017. Lateral variations in SKS splitting across the MAGIC array, central Appalachians. Geochemistry, Geophysics, Geosystems, 18, doi:10.1029/2017GC007169. [PDF]

68. Long, M. D., Ford, H. A.^, Abrahams, L.**, Wirth, E. A., 2017. The seismic signature of lithospheric deformation due to Grenvillian and Appalachian orogenesis beneath eastern North America. Lithosphere, 9, 987-1001, doi:10.1130/L.660.1. [PDF]

67. Creasy, N.*, Long, M. D., Ford, H. A.^, 2017. Deformation of the lowermost mantle beneath Australia from observations and models of seismic anisotropy. Journal of Geophysical Research, 122, 5243-5267, doi:10.1002/2016JB013901. [PDF]

66. Bishop. B. T., Beck, S. L., Zandt, G., Wagner, L. S., Long, M. D., Antonijevic, S, K., Kumar, A., Tavera, H., 2017. Causes and consequences of flat slab subduction in southern Peru. Geosphere, 13, doi:10.1130/GES01440.1 (Subduction Top to Bottom 2 special issue). [PDF]

65. Deng, J.*, Long, M. D., Creasy, N.*, Wagner, L. S., Beck, S. L., Tavera, H., 2017. Lowermost mantle anisotropy near the eastern edge of the Pacific Large Low Shear Velocity Province: Constraints from SKS-SKKS splitting intensity discrepancies. Geophysical Journal International, 210, 774-786. [PDF]

64. Scire, A., Zandt, G., Beck, S. L., Long, M. D., Wagner, L. S., 2017. The deforming Nazca slab in the mantle transition zone and lower mantle: Constraints from teleseismic tomography on the deeply subducted slab between 6° and 32°S. Geosphere, 13, 665-690 (Subduction Top to Bottom 2 special issue). [PDF]

63. Lynner, C.*, Long, M. D., Thissen, C. J., Paczkowski, K., Montesi, L. G. J., 2017. Evaluating geodynamic models for sub-slab anisotropy: Effects of olivine fabric type. Geosphere, 13, 247-259 (Subduction Top to Bottom 2 special issue). [PDF]

62. Long, M. D., 2017. The Field Experiences for Science Teachers (FEST) Project: Involving Connecticut high school science teachers in field seismology. Seismological Research Letters, 88, 421-429. [PDF]

61. Wirth, E. A.*, Long, M. D., Moriarty, J. M., 2017. A Markov chain Monte Carlo with Gibbs sampling approach to receiver function forward modeling. Geophysical Journal International, 208, 10-23. [PDF]

60. Long, M. D., 2016. The Cascadia Paradox: Mantle flow and slab fragmentation in the Cascadia subduction system. Journal of Geodynamics, 102, 151-170. [PDF]

59. Antonijevic, S. K., Wagner, L. S., Beck, S. L., Long, M. D., Zandt, G., Tavera, H., 2016. Effects of change in slab geometry on the mantle flow and slab fabric in southern Peru, Journal of Geophysical Research, 121, doi:10.1029/2016JB013064. [PDF]

58. Ford, H. A.^, Long, M. D., Wirth, E. A., 2016. Mid-lithospheric discontinuities and complex anisotropic layering in the mantle lithosphere beneath the Wyoming and Superior Provinces. Journal of Geophysical Research, 121, 6675-6697, doi:10.1029/2016JB012978. [PDF]

57. Long, M. D., Biryol, C. B., Eakin, C. M., Beck, S. L., Wagner, L. S., Zandt, G., Minaya, E., Tavera, H., 2016. Overriding plate, mantle wedge, slab, and sub-slab contributions to seismic anisotropy beneath the northern Central Andean Plateau. Geochemistry, Geophysics, Geosystems, 17, 2556-2575, doi:10.1029/2016GC006316. [PDF]

56. Kumar, A., Wagner, L. S., Beck, S. L., Long, M. D., Zandt, G., Young, B., Tavera, H., Minaya, E., 2016. Geometry and state of stress in the central and southern Peruvian flat slab. Earth and Planetary Science Letters, 441, 71-80. [PDF]

55. Eakin, C. M.*, Long, M. D., Scire, A., Beck, S. L., Wagner, L. S., Zandt, G., Tavera, H., 2016. Internal deformation of the subducted Nazca slab inferred from seismic anisotropy. Nature Geoscience, 9, 56-59. [PDF]

54. Long, M. D., Jackson, K. G.**, McNamara, J. F.**, 2016. SKS splitting beneath Transportable Array stations in eastern North America and the signature of past lithospheric deformation. Geochemistry, Geophysics, Geosystems, 17, 2-15, doi:10.1029/2015GC006088. [PDF]

53. Scire, A., Zandt, G., Beck, S. L., Long, M. D., Wagner, L. S., Minaya, E., Tavera, H., 2016. Imaging the transition from flat to normal subduction: Variations in the structure of the Nazca slab and upper mantle under southern Peru and northwestern Bolivia. Geophysical Journal International, 204, 457-479. [PDF]

52. Long, M. D., Lynner, C.*, 2015. Seismic anisotropy in the lowermost mantle near the Perm Anomaly. Geophysical Research Letters, 42, 7073-7080, doi:10.1029/2015GL065506. [PDF]

51. Antonijevic, S. K., Wagner, L. S., Kumar, A., Beck, S. L., Long, M. D., Zandt, G., Tavera, H., Condori, C., 2015. The role of ridges in the formation and longevity of flat slabs. Nature, 532, 212-215. [PDF]

50. Ford, H. A.^, Long, M. D., 2015. A regional test of global models for flow, rheology, and seismic anisotropy at the base of the mantle. Physics of the Earth and Planetary Interiors, 245, 71-71. [PDF]

49. Mohiuddin, A.*, Long, M. D., Lynner, C.*, 2015. Mid-mantle seismic anisotropy beneath southwestern Pacific subduction systems and implications for mid-mantle deformation. Physics of the Earth and Planetary Interiors, 245, 1-14. [PDF]

48. Ford, H. A.^, Long, M. D., He, X.^, Lynner, C.*, 2015. Lowermost mantle flow along the eastern edge of the African Large Low Shear Velocity Province. Earth and Planetary Science Letters, 420,12-22. [PDF]

47. Lynner, C.*, Long, M. D., 2015. Heterogeneous seismic anisotropy in the transition zone and uppermost lower mantle beneath Japan, Izu-Bonin, and South America. Geophysical Journal International, 201,1545-1552. [PDF]

46. Eakin, C. M.*, Long, M. D., Wagner, L. S., Beck, S. L., Tavera, H., 2015. Upper mantle anisotropy beneath Peru from SKS splitting: Constraints on flat slab dynamics and slab-ridge interaction. Earth and Planetary Science Letters, 412, 152-162. [PDF]

45. Paczkowski, K.*, Thissen, C. J., Long, M. D., Montesi, L. G. J., 2014. Deflection of mantle flow beneath subducting slabs and patterns of seismic anisotropy. Geophysical Research Letters, 41, 6734-6742, doi:10.1002/2014GL060914. [PDF]

44. Paczkowski, K.*, Montesi, L. G. J., Long, M. D., Thissen, C. J., 2014. Three-dimensional flow in the sub-slab mantle. Geochemistry, Geophysics, Geosystems, 15, 3989-4008, doi:10.1002/2014GC005441. [PDF]

43. Lynner, C.*, Long, M. D., 2014. Testing models of sub-slab anisotropy using a global compilation of source-side shear wave splitting data. Journal of Geophysical Research, 119, 7226-7244, doi:10.1002/2014JB010983. [PDF]

42. Bercovici, D., Long, M. D., 2014. Slab rollback instability and super-continent dispersal. Geophysical Research Letters, 41, 6659-6666, doi:10.1002/2014GL061251. [PDF]

41. Wirth, E. A.*, Long, M. D., 2014. A contrast in anisotropy across the mid-lithospheric discontinuity beneath the central United States: A relic of craton formation. Geology, 42, 851-854. [PDF]

40. Lynner, C.*, Long, M. D., 2014. Sub-slab anisotropy beneath the Sumatra and circum-Pacific subduction zones from source-side shear wave splitting observations. Geochemistry, Geophysics, Geosystems, 15, doi:10.1002/2014GC005239. [PDF]

39. Lynner, C.*., Long, M. D., 2014. Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP. Geophysical Research Letters, 41, 3438-3446, doi:10.1002/ 2014GL059875. [PDF]

38. Eakin, C. M.*, Long, M. D., Beck, S. L., Wagner, L. S., Tavera, H., Condori, C., 2014. Response of the mantle to flat slab evolution: Insights from local S splitting beneath Peru. Geophysical Research Letters, 41, 3438-3446, doi:10.1002/2014GL059943. [PDF]

37. Benoit, M. H., Long, M. D., King, S. D., 2013. Anomalously thin transition zone and apparently isotropic upper mantle beneath Bermuda: Evidence for upwelling. Geochemistry, Geophysics, Geosystems, 14, 4282-4291, doi:10.1002/ggge.20277. [PDF]

36. Wagner, L. S., Long, M. D., 2013. Distinctive upper mantle anisotropy beneath the High Lava Plains and Eastern Snake River Plain, Pacific Northwest, USA. Geochemistry, Geophysics, Geosystems, 14, 4647-4666, doi:10.1002/ggge.20275. [PDF]

35. Eakin, C. M.*, Long, M. D., 2013. Complex anisotropy beneath the Peruvian flat slab from frequency-dependent, multiple-phase shear wave splitting analysis. Journal of Geophysical Research, 118, 4794-4813, doi:10.1002/jgrb50349. [PDF]

34. Wagner, L. S., Fouch, M. J., James, D. E., Long, M. D., 2013. The role of hydrous phases in the formation of trench parallel anisotropy: Evidence from Rayleigh waves in Cascadia. Geophysical Research Letters, 40, 2642-2646, doi:10.1002/grl.50525. [PDF]

33. Long, M. D., 2013. Constraints on subduction geodynamics from seismic anisotropy. Reviews of Geophysics, 51, 76-112. [PDF]

32. McCormack, K.**, Wirth, E. A.*, Long, M. D., 2013. B-type olivine fabric and mantle wedge serpentinization beneath the Ryukyu arc. Geophysical Research Letters, 40, 1697-1702, doi:10.1002/grl.50369. [PDF]

31. Long, M. D., Wirth, E. A.*, 2013. Mantle flow in subduction systems: The wedge flow field and implications for wedge processes. Journal of Geophysical Research, 118, 583-606, doi:10.1002/jgrb.50063. [PDF]

30. Lynner, C.*, Long, M. D., 2013. Sub-slab seismic anisotropy and mantle flow beneath the Caribbean and Scotia subduction zones: Effects of slab morphology and kinematics. Earth and Planetary Science Letters, 361,367-378. [PDF]

29. Long, M. D., Till, C. B., Druken, K. A., Carlson, R. W., Wagner, L. S., Fouch, M. J., James, D. E., Grove, T. L., Schmerr, N., Kincaid, C., 2012. Mantle dynamics beneath the Pacific Northwest and the generation of voluminous back-arc volcanism. Geochemistry, Geophysics, Geosystems, 13, Q0AN01, doi:10.1029/2012GC004189. [PDF]

28. Wirth, E. A.*, Long, M. D., 2012. Multiple layers of seismic anisotropy and a low-velocity region in the mantle wedge beneath Japan: Evidence from teleseismic receiver functions. Geochemistry, Geophysics, Geosystems, 13, Q08005, doi:10.1029/2012GC004180. [PDF]

27. Wagner, L. S., Long, M. D., Johnston, M. D.**, Benoit, M. H., 2012. Lithospheric and asthenospheric contributions to shear-wave splitting observations in the southeastern United States. Earth and Planetary Science Letters, 341-344, 128-138. [PDF]

26. Lynner, C.*, Long, M. D., 2012. Evaluating contributions to SK(K)S splitting from lower mantle anisotropy: A case study from station DBIC, Cote D’Ivoire. Bulletin of the Seismological Society of America, 102, 1030-1040. [PDF]

25. Hanna, J.*, Long, M. D., 2012. SKS splitting beneath Alaska: Regional variability and implications for subduction processes at a slab edge. Tectonophysics, 530-531, 272-285. [PDF]

24. Becker, T. W., Lebedev, S., Long, M. D., 2012. On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography. Journal of Geophysical Research, 117, B01306, doi:10.1029/2001JB008705. [PDF]

23. He, X.^, Long, M. D., 2011. Lowermost mantle anisotropy beneath the northwestern Pacific: Evidence from PcS, ScS, SKS, and SKKS phases. Geochemistry, Geophysics, Geosystems, 12, Q12012, doi:10.1029/2011GC003779. [PDF]

22. Johnston, M. D.**, Long, M. D., Silver, P. G., 2011. State of stress and age offsets at oceanic fracture zones and implications for the initiation of subduction. Tectonophysics, 512, 47-59. [PDF]

21. Druken, K. A., Long, M. D., Kincaid, C., 2011. Patterns in seismic anisotropy driven by slab rollback beneath the High Lava Plains. Geophysical Research Letters, 38, L13310, doi:10.1029/2011GL047541. [PDF]

20. Silver, P. G., Long, M. D., 2011. The non-commutivity of shear wave splitting operators at low frequencies and implications for anisotropy tomography. Geophysical Journal International, 184, 1415-1427. [PDF]

19. Foley, B. J.*, Long, M. D., 2011. Upper and mid-mantle anisotropy beneath the Tonga slab. Geophysical Research Letters, 38, L02303, doi:10.1029/ 2010GL046021. [PDF]

18. Long, M. D., Benoit, M. H., Chapman, M. C., King, S. D., 2010. Upper mantle anisotropy and transition zone thickness beneath southeastern North America and implications for mantle dynamics. Geochemistry, Geophysics, Geosystems, 11, Q10012, doi:10.1029/2010GC003247. [PDF]

17. Long, M. D., 2010. Frequency-dependent shear wave splitting and heterogeneous anisotropic structure beneath the Gulf of California region. Physics of the Earth and Planetary Interiors, 182, 59-72. [PDF]

16. Long, M. D., Becker, T. W., 2010. Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, Frontiers, 297, 341-354. [PDF]

15. Wirth, E.*, Long, M. D., 2010. Frequency-dependent shear wave splitting beneath the Japan and Izu-Bonin subduction zones. Physics of the Earth and Planetary Interiors, 181, 141-154. [PDF]

14. Long, M. D., Gao, H., Klaus, A.**, Wagner, L. S., Fouch, M. J., James, D. E., Humphreys, E. D., 2009. Shear wave splitting and the pattern of mantle flow beneath eastern Oregon. Earth and Planetary Science Letters, 288, 359-369. [PDF]

13. Long, M. D., Silver, P. G., 2009. Mantle flow in subduction systems: The sub-slab flow field and implications for mantle dynamics. Journal of Geophysical Research, 114, B10312, doi:10.1029/2008JB006200. [PDF]

12. Long, M. D., Silver, P. G., 2009. Shear wave splitting and mantle anisotropy: Measurements, interpretations, and new directions. Surveys in Geophysics, 30, 407-461. [PDF]

11. Long, M. D., 2009. Complex anisotropy in D” beneath the eastern Pacific from SKS-SKKS splitting discrepancies. Earth and Planetary Science Letters, 283, 181-189. [PDF]

10. Long, M. D., Silver, P. G., 2008. The subduction zone flow field from seismic anisotropy: A global view. Science, 319, 315-318. [PDF]

9. Kneller, E. A., Long, M. D., van Keken, P. E., 2008. Olivine fabric transitions and shear-wave anisotropy in the Ryukyu subduction system. Earth and Planetary Science Letters, 268, 268-282. [PDF]

8. Long, M. D., de Hoop, M. V., van der Hilst, R. D., 2008. Wave-equation shear wave splitting tomography. Geophysical Journal International, 172, 311-330. [PDF]

7. Long, M. D., Hager, B. H., de Hoop, M. V., van der Hilst, R. D., 2007. Two-dimensional modeling of subduction zone anisotropy with application to southwestern Japan. Geophysical Journal International, 170, 839-856. [PDF]

6. Lev, E., Long, M. D., van der Hilst, R. D., 2006. Seismic anisotropy in eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth and Planetary Science Letters, 251, 293-304. [PDF]

5. Long, M. D., Xiao, X., Jiang, Z., Evans, B., Karato, S.-i., 2006. Lattice preferred orientation in deformed polycrystalline (Mg,Fe)O and implications for seismic anisotropy in D”. Physics of the Earth and Planetary Interiors, 156, 75-88. [PDF]

4. Long, M. D., van der Hilst, R. D., 2006. Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge. Physics of the Earth and Planetary Interiors, 155, 300-312. [PDF]

3. Long, M. D., van der Hilst, R. D., 2005. Estimating shear wave splitting parameters from broadband recordings in Japan: A comparison of three methods. Bulletin of the Seismological Society of America, 95, 1346-1358. [PDF]

2. Long, M. D., van der Hilst, R. D., 2005. Upper mantle anisotropy beneath Japan from shear wave splitting. Physics of the Earth and Planetary Interiors, 151, 206-222. [PDF]

1. McCaffrey, R., Long, M. D., Goldfinger, C., Zwick, P. C., Nabelek, J. L., Johnson, C. K., Smith, C., 2000. Rotation and plate locking at the southern Cascadia subduction zone, Geophysical Research Letters, 27, 3117-3120. [PDF]

II. Papers in Review/Revision

R6. Li, M., Wolf, J.*, Garnero, E., Long, M. D., 2024. Flow and deformation in Earth’s deepest mantle from geodynamic modeling and implications for seismic anisotropy. Journal of Geophysical Research, in revision.

R5. Espinal, K.*, Long, M. D., Karabinos, P., Bourke, J.^, 2024. Lithospheric structure above the Northern Appalachian Anomaly: Initial results from the NEST array. Geophysical Research Letters, revised manuscript in review.

R4. Wof, J.*, Frost, D. A., Brewster, A., Long, M. D., Garnero, E., West, J. D., 2024. Widespread D” anisotropy beneath North American and the northeastern Pacific Ocean and implications for upper mantle anisotropy measurements. Journal of Geophysical Research, in revision.

R3. Boyd, O. S., Barnhart, W. D., Bourke, J.^, Chapman, M., Earle, P. S., Huang, G-c. D., Jobe, J., Kim, W.-Y., Link, F.^, Litherland, M., Long, M. D., Michael, A. J., Mooney, W. D., Mountain, G. S., Nikolau, S., Savvaidis, A., Waldhauser, F., Wolfe, C. J., Yoon, C., 2024. The April 5th, 2024 M4.8 New Jersey earthquake: Physical overview and response. The Seismic Record, in revision.

R2. Luo, Y.*, Rondenay, S., Long, M. D., King, S. D., Mazza, S. E., 2024. Mantle transition zone geometry beneath eastern North America resolved by scattered wavefield migration. Journal of Geophysical Research, in review.

R1. Xu, E.**, Wolf, J.*, Long, M. D., Frost, D. A., Li, M., 2024. Lowermost mantle anisotropy near Australia estimated using array techniques: Deformation linked to large low velocity province and deep mantle upwelling. AGU Advances, submitted.

III. Manuscripts in Preparation

P6. Masis, R.*, Karabinos, P., Long, M. D., Waldron, J., Bourke, J. R.^, 2024. Crustal structure of Laurentia and peri-Gondwanan terranes beneath Ireland and Great Britain and comparison with eastern North America. In preparation for Geochemistry, Geophysics, Geosystems.

P5. Bourke, J. R.^, Long, M. D., Webb, L., Karabinos, P., Luo, Y.*, Link, F.^, Espinal, K.*, 2024. Relict lithospheric structures beneath the northern Appalachians. In preparation for Journal of Geophysical Research.

P4. Bourke, J. R.^, Link, F.^, Long, M. D., Wright, J., 2024. Evidence for the subduction of the Caribbean Plate beneath Panama. In preparation for Earth and Planetary Science Letters. 

P3. Loeberich, E.^, Wolf, J.*, Long, M. D., 2024. Effects of partial melt in the upper mantle on SKS splitting parameters and application to the Cascadia backarc. In preparation for Physics of the Earth and Planetary Interiors.

P2. Vilton, V.**, Luo, Y.*, Bourke, J. R.^, Link, F.^, Long, M. D., 2024. Lithospheric structure beneath Haiti from anisotropy-aware receiver function analysis. In preparation for Tectonophysics.

P1. Schultz, A.**, Luo, Y.*, Long, M. D., 2024. Moho impedance contrasts throughout the Cascadia subduction zone: Evidence for mantle wedge serpentinization. In preparation for Geophysical Research Letters.

IV. Other Contributions (non-peer reviewed)

O13. Fernando, B., Wolf, J*, Leng, K., Nissen-Meyer, T., Eaton, W., Styczinski, M., Walker, A., Craig, T., Muir, J., Nunn, C., Long, M. D., 2024. AxiSEM3D - an introduction to using the code and its applications. EarthArXiv, doi:10.31223/X5TH7P.

O12. Karabinos, P., Masis Arce, R., Levin, V., Luo, Y.*, Long, M. D., Crowley, J. L., Macdonald, F. A., 2022. The suture between Laurentia and the Gondwanan-derived Moretown Terrane in Western Massachusetts: Insights from geology and geophysics. New England Intercollegiate Geological Conference Field Guide.

O11. Adams, A., Long, M. D., 2021. Pairing community seismic experiments with seismic community development. GeoPRISMS Newsletter, 43, 92-95. [PDF]

O10. Long, M. D., 2017. Review of Geophysical Data Analysis: Discrete Inverse Theory (Matlab Edition), Third Edition, by William Menke. American Mineralogist, 102, 321 (Book review). [PDF]

O9. Long, M. D., 2016. Hooper, Long, Nishimura, Sluijs, and Villarini receive 2016 James B. Macelwane medals (Response to citation), Eos, 97, doi:10.1029/2016EO064061. [link]

O8. Constable, C. G., Masters, T. G., Buffet, B., Day, J. M. D., Hirschmann, M., Karato, S.-i., Kellogg, L., Long, M. D., Mao, W., 2016. Cooperative Studies of the Earth’s Deep Interior: Understanding the origin and evolution of our planet through interdisciplinary research. Report to the National Science Foundation. [link]

O7. Long, M. D., 2015. How mountains get made. Science, 349, 687-688 (Perspectives article). [PDF]

O6. Becel, A., Benoit, M. H., Long, M. D., Wagner, L. S., 2015. Eastern North American Margin (ENAM) Community Seismic Experiment (CSE) Broadband OBS Recovery, R/V Endeavor, Cruise Report EN-552.

O5. Long, M. D., Levander, A., Shearer, P. M., 2014. An introduction to the special issue of Earth and Planetary Science Letters on USArray science. Earth and Planetary Science Letters, 402, 1-5, doi:10.1016/j.epsl.2014.06.016. [PDF]

O4. Long, M. D., Levin, V., 2014. USArray reaches the East Coast. InSights, the EarthScope Newsletter, Winter 2014, pp. 1-2. [PDF]

O3. Long, M. D., 2010. How are Earth’s internal boundaries affected by dynamics, temperature, and composition? In: Facilitating New Discoveries in Seismology and Exploring the Earth: The Next Decade (IRIS Core Proposal, Vol. II), pp. 17-19.

O2. Long, M. D., 2009. Going with the mantle flow. Nature Geoscience, 2, 10-11 (News and Views article). [PDF]

O1. Long, M. D., 2006. Anisotropy and deformation in the Earth’s mantle: Seismological observations, geodynamical models, and laboratory experiments. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.